Skip to main content
Log in

An Optimization and Parametric Study of a Schlieren Motion Estimation Method

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Schlieren imaging is a widely used technique for flow visualization in turbulence and combustion investigations due to its high sensitivity, flexibility and easiness in use. With the development of digital imaging and image processing techniques, it is possible to retrieve velocity measurements using time-resolved schlieren imaging sequences. In this paper, an optimization and parametric study has been conducted on a newly proposed schlieren motion estimation (SME) algorithm, based on the high speed schlieren images of a jet flow and the transient ignition process of impinging flames. The SME algorithm is optimized using a graduated non-convexity (GNC) computing scheme, which employs a three stage strategy by linearly combining a convex quadratic function and a slightly non-convex generalized Charbonnier function. The Euler–Lagrange equations have been derived, while the penalty function was separated so that penalty functions can be changed conveniently. Parametric investigations have been conducted to discuss the influence of weight parameters, while the suitable ranges have been obtained after intensive calculations. Comprehensive comparisons have been made between the SME and GNC-SME methods, which indicates that the GNC scheme can preserve the boundary well and avoid local divergence and over-smoothness at the same time. The suitable weight parameter range is also broadened by using the GNC technique. The better robustness of GNC-SME method makes it more adaptive to various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arnaud, E., Mémin, É., Sosa, R., Artana, G.: A fluid motion estimator for schlieren image velocimetry. ECCV 3951, 198–210 (2006)

    Google Scholar 

  • Biswas, S., Qiao, L.: A comprehensive statistical investigation of schlieren image velocimetry (SIV) using high-velocity helium jet. Exp. Fluids 58(3), 18 (2017)

    Article  Google Scholar 

  • Black, M.J.: A robust gradient method for determining optical flow. IEEE CVPR, Champagne-Urbana (1992)

    Google Scholar 

  • Blake, A., Zisserman, A.: Visual reconstruction. MIT press, Cambridge (1987)

    Book  Google Scholar 

  • Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. ECCV 3024, 25–36 (2004)

    MATH  Google Scholar 

  • Cohen, I., Herlin, I.: Non uniform multiresolution method for optical flow and phase portrait models: environmental applications. Int. J. Comput. Vis. 33(1), 29–49 (1999)

    Article  Google Scholar 

  • Corpetti, T., Memin, E., Perez, P.: Dense estimation of fluid flows. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 365–380 (2002)

    Article  Google Scholar 

  • Fu, S., Wu, Y.: Detection of velocity distribution of a flow field using sequences of Schlieren images. Opt. Eng. 40(8), 1661–1666 (2001)

    Article  Google Scholar 

  • Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artific. Intell. 17(1–3), 185–203 (1980)

    Google Scholar 

  • Jonassen, D.R., Settles, G.S., Tronosky, M.D.: Schlieren “PIV” for turbulent flows. Opt. Lasers Eng. 44(3/4), 190–207 (2006)

    Article  Google Scholar 

  • Kegerise, M.A., Settles, G.S.: Schlieren image-correlation velocimetry and its application to free-convection flows. 9th Int. Symp. Flow Visual. Edinburgh, 380:1–13 (2000).

  • Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  • Liu, T., Shen, L.: Fluid flow and optical flow. J. Fluid Mech. 614, 253–291 (2008)

    Article  MathSciNet  Google Scholar 

  • Martínez-González, A., Guerrero-Viramontes, J.A., Moreno-Hernández, D.: Temperature and velocity measurement fields of fluids using a schlieren system. Appl. Opt. 51(16), 3519–3525 (2012)

    Article  Google Scholar 

  • Mauger, C., Méès, L., Michard, M., Lance, M.: Velocity measurements based on shadowgraph-like image correlations in a cavitating micro-channel flow. Int. J. Multiphase Flow 58(1), 301–312 (2014)

    Article  Google Scholar 

  • Papamoschou, D.: A two-spark schlieren system for very-high velocity measurement. Exp. Fluids 7(5), 354–356 (1989)

    Article  Google Scholar 

  • Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  • Pless, R., Brodsky, T.: Detecting independent motion: the statistics of temporal continuity. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 768–773 (2000)

    Article  Google Scholar 

  • Settles, G.: Schlieren and shadowgraph techniques: visualizing phenomena in transport media. Springer, Berlin (2002)

    MATH  Google Scholar 

  • Sun, D., Roth, S., Lewis, J.P., Black, M.J.: Learning optical flow. ECCV 5304, 83–97 (2008)

    Google Scholar 

  • Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their principles. IEEE CVPR 2432–2439 (2010).

  • Sun, D., Roth, S., Black, M.J.: A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int. J. Comput. Vis. 106(2), 115–137 (2014)

    Article  Google Scholar 

  • Suter, D.: Motion estimation and vector splines. CVPR IEEE 94, 939–942 (1994)

    Google Scholar 

  • Tistarelli, M.: Multiple constraints for optical flow. ECCV 1, 61–70 (1994)

    Google Scholar 

  • Townend, H.: A method of airflow cinematography capable of quantitative analysis. J. Aero. Sci. 3(10), 343–352 (2015)

    Article  Google Scholar 

  • Wang, Q., Zhao, C.Y., Zhang, Y.: Time-resolved 3D investigation of the ignition process of a methane diffusion impinging flame. Exp. Therm. Fluid Sci. 62, 78–84 (2015)

    Article  Google Scholar 

  • Wang, Q., Zhang, Y., Zhao, C.Y.: Experimental investigation of coflow effect on the ignition process of a methane jet diffusion flame. Exp. Therm. Fluid Sci. 91, 184–196 (2017)

    Article  Google Scholar 

  • Wang, Q., Wu, Y., Cheng, H.T., Mei, X.H., Zhao, C.Y.: A schlieren motion estimation method for seedless velocimetry measurement. Exp. Therm. Fluid Sci. 109, 109880 (2019)

    Article  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant Nos. 51976121 and 51306113) and National Science and Technology Major Project of China (2017-III-0007–0033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

A. Unknown variables separation.

Equation (14) is valid under the conditions of

$$\mathop {{\text{lim}}}\limits_{x \to 0} \frac{\varphi ^{\prime}\left( x \right)}{x} = \mathop {{\text{lim}}}\limits_{{x_{0} \to 0}} \frac{{\varphi ^{\prime}\left( {x_{0} } \right)}}{{x_{0} }} = {\text{const}}.$$
(A1)

For the quadratic penalty function \(\varphi_{1} \left( x \right) = x^{2}\), we may derive that

$$\mathop {{\text{lim}}}\limits_{x \to 0} \frac{{\varphi^{\prime}_{1} \left( x \right)}}{x} = \mathop {{\text{lim}}}\limits_{x \to 0} \frac{2x}{x} = 2.$$
(A2)

For the generalized Charbonnier function \(\varphi_{2} \left( x \right) = \left( {\sigma^{2} + x^{2} } \right)^{a}\), we have

$$\mathop {{\text{lim}}}\limits_{x \to 0} \frac{{\varphi^{\prime}_{2} \left( x \right)}}{x} = \mathop {{\text{lim}}}\limits_{x \to 0} \frac{{2ax\left( {\sigma^{2} + x^{2} } \right)^{a - 1} }}{x} = \mathop {{\text{lim}}}\limits_{x \to 0} 2a\left( {\sigma^{2} + x^{2} } \right)^{a - 1} = 2a\sigma^{a - 1} = {\text{const}}.$$
(A3)

From Eqs. (A2) and (A3), it can be seen that both the quadratic and generalized Charbonnier penalty functions satisfy the conditions defined in Eq. (A1). Thus the unknown variables can be seperated from the two penalty functions.

B. Derivative order decrease.

For the Eq. (17), firstly, we write the Taylor expanstions of \(\varphi^{\prime\prime}\left( x \right)\) and \(\frac{{\varphi^{\prime}\left( x \right)}}{x}\) at x = 0, which are as follows:

$$\begin{gathered} \varphi^{\prime}\left( x \right) = \varphi^{\prime}\left( 0 \right) + \frac{{\varphi^{\prime\prime}\left( 0 \right)}}{1!}x + \frac{{\varphi^{\left( 3 \right)} \left( 0 \right)}}{2!}x^{2} + \cdots + \frac{{\varphi^{{\left( {n + 2} \right)}} \left( 0 \right)}}{{\left( {n + 1} \right)!}}x^{n + 1} \hfill \\ \varphi^{\prime\prime}\left( x \right) = \varphi^{\prime\prime}\left( 0 \right) + \frac{{\varphi^{\left( 3 \right)} \left( 0 \right)}}{1!}x + \frac{{\varphi^{\left( 4 \right)} \left( 0 \right)}}{2!}x^{2} + \cdots + \frac{{\varphi^{{\left( {n + 2} \right)}} \left( 0 \right)}}{\left( n \right)!}x^{n} \hfill \\ \frac{{\varphi^{\prime}\left( x \right)}}{x} = \frac{{\varphi^{\prime}\left( 0 \right)}}{x} + \varphi^{\prime\prime}\left( 0 \right) + \frac{{\varphi^{\left( 3 \right)} \left( 0 \right)}}{1!}\frac{x}{2} + \cdots + \frac{{\varphi^{{\left( {n + 2} \right)}} \left( 0 \right)}}{\left( n \right)!}\frac{{x^{n} }}{n + 1} \hfill \\ \end{gathered}$$
(B1)

Here we have \(\varphi^{\prime}\left( 0 \right) = 0\). As for quadratic penalty function,\(\varphi_{1}^{^{\prime}} \left( x \right) = \left. {2x} \right|_{x = 0} = 0\); for generalized Charbonnier penalty function, \(\varphi_{2}^{^{\prime}} \left( x \right) = \left. {2ax\left( {\sigma^{2} + x^{2} } \right)^{a - 1} } \right|_{x = 0} = 0\). By neglecting the higher order terms, we have

$$\mathop {{\text{lim}}}\limits_{x \to 0} \left[ {\varphi ^{\prime\prime}\left( x \right) - \frac{{\varphi^{\prime}\left( x \right)}}{x}} \right] = \frac{{\varphi^{\left( 3 \right)} \left( 0 \right)}}{2}x$$
(B2)

If the penalty function satisfies

$$\mathop {{\text{lim}}}\limits_{x \to 0} \frac{{\varphi^{\left( 3 \right)} \left( 0 \right)}}{2}x = 0$$
(B3)

then the relationship in Eq. (17) can be satisfied. In the following, we will prove that Eq. (B2) is valid for the two penalty functions we use.

For the quatratic penalty function \(\varphi_{1} \left( x \right) = x^{2}\), it is easy to find that

$$\mathop {{\text{lim}}}\limits_{x \to 0} \varphi_{1\left( x \right)}^{\left( 3 \right)} = 0$$
(B4)

For the generalized Charbonnier function \(\varphi_{2} \left( x \right) = \left( {\sigma^{2} + x^{2} } \right)^{a}\), it can be written as

$$\mathop {{\text{lim}}}\limits_{x \to 0} \varphi_{2\left( x \right)}^{\left( 3 \right)} = \mathop {{\text{lim}}}\limits_{x \to 0} \left[ {12a\left( {a - 1} \right)x\left( {\sigma^{2} + x^{2} } \right)^{a - 2} + 8a\left( {a - 1} \right)\left( {a - 2} \right)x^{3} \left( {\sigma^{2} + x^{2} } \right)^{a - 3} } \right] = 0$$
(B5)

Up to present, we have proved that Eq. (17) is satisfied for both penalty functions in the current GNC-SME scheme.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Mei, X.H., Wu, Y. et al. An Optimization and Parametric Study of a Schlieren Motion Estimation Method. Flow Turbulence Combust 107, 609–630 (2021). https://doi.org/10.1007/s10494-021-00246-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-021-00246-1

Keywords

Navigation