Skip to main content
Log in

Numerical and Experimental Studies on Performance Enhancement of Journal Bearings Using Nanoparticles Based Lubricants

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The emergence of nanotechnology and existence of computational techniques for measuring the thermophysical properties of nanolubricants has culminated in a substantial number of experimental studies over past two decades. Development of nanoparticles is a field that has more proximity to innovations taking place in the domain of physics and chemistry but their application aspects have attracted the researchers towards the performance analysis of equipments with nanolubricants in diverse engineering fields. This paper presents a state-of-the-art review of various numerical and experimental studies conducted for enhancing the tribological performance of journal bearings with different lubricants. A comprehensive review of previously published studies has been provided as a valuable guide for researchers to choose the correct lubricant(s), nanoparticle(s), and selection of numerical and analytical methods for further exploration in the field of nanolubricants for performance enhancement of journal bearings. Several practical and technical issues with their potential solutions have also been explored in the field of nanolubricants. Despite their exemplary tribological performance, there is a dire need to formulate computational methods for the evaluation of journal bearing performance by taking the effects of nanolubricants into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stachowiak G, Batchelor AW (2013) Engineering tribology, 4th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  2. Dai W, Kheireddin B, Gao H, Liang H (2016) Roles of nanoparticles in oil lubrication. Tribol Int 102:88–98. https://doi.org/10.1016/j.triboint.2016.05.020

    Article  Google Scholar 

  3. Shahnazar S, Bagheri S, Abd Hamid SB (2016) Enhancing lubricant properties by nanoparticle additives. Int J Hydrogen Energy 41:3153–3170. https://doi.org/10.1016/j.ijhydene.2015.12.040

    Article  Google Scholar 

  4. Uflyand IE, Zhinzhilo VA, Burlakova VE (2019) Metal-containing nanomaterials as lubricant additives: State-of-the-art and future development. Friction 7:93–116. https://doi.org/10.1007/s40544-019-0261-y

    Article  Google Scholar 

  5. Wu YY, Kao MJ (2011) Using TiO2/DN nanofluid additive for engine lubrication oil. Ind Lubricat Tribol 63:440–445. https://doi.org/10.1108/00368791111169025

    Article  Google Scholar 

  6. Ghaednia H, Jackson RL, Khodadadi JM (2015) Experimental analysis of stable CuO nanoparticle enhanced lubricants. J Exp Nanosci 10:1–18. https://doi.org/10.1080/17458080.2013.778424

    Article  Google Scholar 

  7. Wu YY, Tsui WC, Liu TC (2007) Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear 262:819–825. https://doi.org/10.1016/j.wear.2006.08.021

    Article  Google Scholar 

  8. Rapoport L, Leshchinsky V, Lvovsky M et al (2003) Superior tribological properties of powder materials with solid lubricant nanoparticles. Wear 255:794–800

    Article  Google Scholar 

  9. Tarasov S, Kolubaev A, Belyaev S et al (2002) Study of friction reduction by nanocopper additives to motor oil. Wear 252:63–69

    Article  Google Scholar 

  10. Khonsari MM, Booser ER (2017) Applied tribology: bearing design and lubrication. Wiley, Hoboken

    Book  Google Scholar 

  11. Harnoy A (2002) Bearing design in machinery: engineering tribology and lubrication. CRC Press, Boca Raton

    Book  Google Scholar 

  12. Raimondi AA, Boyd J (1958) A solution for the finite journal bearing and its application to analysis and design: I. ASLE Trans 1:159–174. https://doi.org/10.1080/05698195808972330

    Article  Google Scholar 

  13. Raimondi AA, Boyd J (1958) A solution for the finite journal bearing and its application to analysis and design: II. ASLE Trans 1:175–193. https://doi.org/10.1080/05698195808972330

    Article  Google Scholar 

  14. Raimondi AA, Boyd J (1958) A solution for the finite journal bearing and its application to analysis and design: III. ASLE Trans 1:194–209. https://doi.org/10.1080/05698195808972330

    Article  Google Scholar 

  15. Habata K (1961) Theoretical pressure distribution in journal bearings. J Appl Mech 28:497–506

    Article  MathSciNet  MATH  Google Scholar 

  16. Dowson D (1962) A generalized Reynolds equation for fluid-film lubrication. Int J Mech Sci 4:159–170

    Article  Google Scholar 

  17. Dowson D, Hudson JD, Hunter B, March CN (1966) An experimental investigation of the thermal equilibrium of steadily loaded journal bearings. Proc Inst Mech Eng Conf Proc 181:70–80. https://doi.org/10.1243/pime_conf_1966_181_034_02

    Article  Google Scholar 

  18. Dowson D, March CN (1966) A thermohydrodynamic analysis of journal bearings. Vol 181, pp 117–126

  19. McCallion H, Yousif F, Lloyd T (1970) The analysis of thermal effects in a full journal bearing. J Tribol 92:578–587. https://doi.org/10.1115/1.3451479

    Article  Google Scholar 

  20. Conway HD, Lee HC (1975) Analysis of the Lubrication of a Flexible Journal Bearing. American Society of Mechanical Engineers (Paper) 599–604

  21. Suganami T, Szeri AZ (1979) A thermohydrodynamic analysis of journal bearings. J Tribol 101:21–27. https://doi.org/10.1115/1.3453273

    Article  Google Scholar 

  22. Crosby WA (1980) Thermal considerations in the solution of finite journal bearings. Wear 64:15–32. https://doi.org/10.1016/0043-1648(80)90091-5

    Article  Google Scholar 

  23. Ferron J, Frene J, Boncompain R (1982) A study of the thermohydrodynamic performance of a plain journal bearing comparison between theory and experiments. Vol 105, pp 1–7

  24. Khonsari MM (1987) A review of thermal effects in hydrodynamic bearings. Part II J Bear ASLE Trans 30:26–33

    Article  Google Scholar 

  25. Mistry K, Biswas S, Athre K (1992) Study of thermal profile and cavitation in a circular journal bearing. Wear 159:79–87. https://doi.org/10.1016/0043-1648(92)90288-J

    Article  Google Scholar 

  26. Banwait SS, Chandrawat HN (1998) Study of thermal boundary conditions for a plain journal bearing. Tribol Int 31:289–296. https://doi.org/10.1016/S0301-679X(98)00029-2

    Article  Google Scholar 

  27. Singh U, Roy L, Sahu M (2008) Steady-state thermo-hydrodynamic analysis of cylindrical fluid film journal bearing with an axial groove. Tribol Int 41:1135–1144. https://doi.org/10.1016/j.triboint.2008.02.009

    Article  Google Scholar 

  28. Brito FP, Miranda AS, Claro JCP, Fillon M (2012) Experimental comparison of the performance of a journal bearing with a single and a twin axial groove configuration. Tribol Int 54:1–8. https://doi.org/10.1016/j.triboint.2012.04.026

    Article  Google Scholar 

  29. Brito FP, Miranda AS, Claro JCP et al (2014) The role of lubricant feeding conditions on the performance improvement and friction reduction of journal bearings. Tribol Int 72:65–82. https://doi.org/10.1016/j.triboint.2013.11.016

    Article  Google Scholar 

  30. Manshoor B, Jaat M, Izzuddin Z, Amir K (2013) CFD analysis of thin film lubricated journal bearing. Proc Eng 68:56–62. https://doi.org/10.1016/j.proeng.2013.12.147

    Article  Google Scholar 

  31. Binu KG, Yathish K, Mallya R et al (2015) Experimental study of hydrodynamic pressure distribution in oil lubricated two-axial groove journal bearing. Mater Today Proc 2:3453–3462. https://doi.org/10.1016/j.matpr.2015.07.321

    Article  Google Scholar 

  32. Cristea AF, Bouyer J, Fillon M, Pascovici MD (2017) Transient pressure and temperature field measurements in a lightly loaded circumferential groove journal bearing from startup to steady-state thermal stabilization. Tribol Trans 60:988–1010. https://doi.org/10.1080/10402004.2016.1241330

    Article  Google Scholar 

  33. Vinh DP, Chatterton S, Pennacchi P (2019) Static and dynamic behaviors of a cylindrical hydrodynamic journal bearing operating at very low Sommerfeld numbers. Mech Machine Sci 73:3835–3844. https://doi.org/10.1007/978-3-030-20131-9_380

    Article  Google Scholar 

  34. Pinkus O (1956) Analysis of elliptical bearings. Trans ASME 78:965–973

    Google Scholar 

  35. Pinkus O (1956) Power losses in elliptical and three lobe Bearings. Trans ASME 78:899–904

    Google Scholar 

  36. Pinkus O (1956) Experimental investigation of oil whip. Trans ASME 78:975–983

    Google Scholar 

  37. Pinkus O (1959) Analysis and characteristics of the three-lobe bearing. J Basic Eng 81:49–55

    Article  Google Scholar 

  38. Gupta BK (1982) AJEET SINGH and B. K GUPTA Eng 77:159–170

    Google Scholar 

  39. Singh A, Gupta BK (1984) Stability analysis of orthogonally displaced bearings. Wear 97:83–92. https://doi.org/10.1016/0043-1648(84)90083-8

    Article  Google Scholar 

  40. Malik M (1983) A comparative study of some two-lobed journal bearing configurations. ASLE Trans 26:118–124. https://doi.org/10.1080/05698198308981485

    Article  Google Scholar 

  41. Hashimoto H, Wada S, Tsunoda H (1984) Performance characteristics of elliptical journal bearings in turbulent flow regime. Bulletin of JSME 27:2255–2261

    Article  Google Scholar 

  42. Basri S, Gethin DT (1990) A comparative study of the thermal behaviour of profile bore bearings. Tribol Int 23:265–276. https://doi.org/10.1016/0301-679X(90)90033-L

    Article  Google Scholar 

  43. Crosby WA (1992) An investigation of the performance of a journal bearing with a slightly irregular bore. Tribol Int 25:199–204. https://doi.org/10.1016/0301-679X(92)90049-S

    Article  Google Scholar 

  44. Hussain A, Mistry K, Biswas S, Athre K (1996) Thermal analysis of noncircular bearings. J Tribol 118:246–254. https://doi.org/10.1115/1.2837086

    Article  Google Scholar 

  45. Ma MT, Taylor CM (1996) An experimental investigation of thermal effects in circular and elliptical plain journal bearings. Tribol Int 29:19–26. https://doi.org/10.1016/0301-679X(95)00029-4

    Article  Google Scholar 

  46. Sehgal R, Swamy KNS, Athre K, Biswas S (2000) A comparative study of the thermal behaviour of circular and non-circular journal bearings. Lubr Sci 12:329–344

    Article  Google Scholar 

  47. Mishra PC, Pandey RK, Athre K (2007) Temperature profile of an elliptic bore journal bearing. Tribol Int 40:453–458. https://doi.org/10.1016/j.triboint.2006.04.009

    Article  Google Scholar 

  48. Strzelecki S, Ghoneam SM (2010) The effect of clearance variation on the maximum temperature of the oil film of cylindrical 3-lobe journal, pp 53–60

  49. Sharma SC, Phalle VM, Jain SC (2012) Performance of a noncircular 2-lobe multirecess hydrostatic journal bearing with wear. Ind Lubricat Tribol 64:171–181. https://doi.org/10.1108/00368791211218704

    Article  Google Scholar 

  50. van Ostayen RAJ, van Beek A (2009) Thermal modelling of the lemon-bore hydrodynamic bearing. Tribol Int 42:23–32. https://doi.org/10.1016/j.triboint.2008.05.013

    Article  Google Scholar 

  51. Huang B, Wang LQ, Guo J (2014) Performance comparison of circular, two-lobe and elliptical journal bearings based on TEHD analysis. Ind Lubricat Tribol 66:184–193. https://doi.org/10.1108/ILT-11-2011-0086

    Article  Google Scholar 

  52. Mishra PC (2014) Analysis of a rough elliptic bore journal bearing using expectancy model of roughness characterization. Tribol Ind 36:211–219

    Google Scholar 

  53. Chasalevris A (2015) Analytical evaluation of the static and dynamic characteristics of three-lobe journal bearings with finite length. J Tribol. https://doi.org/10.1115/1.4030023

    Article  Google Scholar 

  54. Yogaraju R, Ravikumar L, Saravanakumar G et al (2016) Feasibility and performance studies of a semi active journal bearing. Proc Technol 25:1154–1161. https://doi.org/10.1016/j.protcy.2016.08.233

    Article  Google Scholar 

  55. Singla A, Chauhan A (2016) Experimental study for performance evaluation of steadily loaded true elliptical and orthogonally displaced non-circular journal bearing profiles. Ind Lubricat Tribol 68:702–711. https://doi.org/10.1108/ILT-10-2015-0155

    Article  Google Scholar 

  56. Tian J, Yang B, Yu L, Zhou J (2018) An investigation on the static performance of the non-circular journal bearing using fourier analysis. Proc ASME Turbo Expo 7A–2018:1–9. https://doi.org/10.1115/GT201877210

    Article  Google Scholar 

  57. Rao TVVLN, Rani AM, Mohamed NM et al (2019) Static and stability analysis of partial slip texture multi-lobe journal bearings. Proc Inst Mech Eng Part J J Eng Tribol. https://doi.org/10.1177/1350650119882834

    Article  Google Scholar 

  58. Zhang C, Wang Y, Men R et al (2019) The effect of three-lobed bearing shapes in floating-ring bearings on the nonlinear oscillations of high-speed rotors. Proc Inst Mech Eng Part J J Eng Tribol. https://doi.org/10.1177/1350650119873802

    Article  Google Scholar 

  59. Chauhan A (2016) Non-circular journal bearings. Springer, Berlin

    Book  Google Scholar 

  60. Ariman T, Turk MA, Sylvester ND (1973) Microcontinuum fluid mechanics-A review. Int J Eng Sci 11:905–930. https://doi.org/10.1016/0020-7225(73)90038-4

    Article  MATH  Google Scholar 

  61. Needs SJ (1940) Boundary film investigations. Trans ASME 62:331

    Google Scholar 

  62. Swanson EE, Kirk RG, Mondy RE (1992) An examination and comparison of the maximum film temperature in a journal bearing for 13 synthetic, mineral, and viscosity index enhanced oils. SAE Tech Pap. https://doi.org/10.4271/922343

    Article  Google Scholar 

  63. Del Din M, Kassfeldt E (1999) Wear characteristics with mixed lubrication conditions in a full scale journal bearing. Wear 232:192–198. https://doi.org/10.1016/S0043-1648(99)00145-3

    Article  Google Scholar 

  64. Durak E (2003) Experimental investigation of porous bearings under different lubricant and lubricating conditions. KSME Int J 17:1276–1286. https://doi.org/10.1007/BF02982469

    Article  Google Scholar 

  65. Brockwell K, Dmochowski W, Decamillo S (2004) An investigation of the steady-state performance of a pivoted shoe journal bearing with ISO VG 32 and VG 68 oils. Tribol Trans 47:480–488. https://doi.org/10.1080/05698190490493382

    Article  Google Scholar 

  66. Dmochowski WM, Webster MN (2005) The effect of lubricant viscosity-temperature characteristics on the performance of plain journal bearings. Proc World Tribol Congress III - WTC 2005:2–3

    Google Scholar 

  67. Durak E, Çetinkaya M, Yenigün B, Karaosmanoǧlu F (2004) Effects of sunflower oil added to base oil on the friction coefficient of statically loaded journal bearings. J Synth Lubr 21:207–222. https://doi.org/10.1002/jsl.3000210304

    Article  Google Scholar 

  68. Durak E, Karaosmanoǧlu F (2004) Using of cottonseed oil as an environmentally accepted lubricant additive. Energy Sour 26:611–625. https://doi.org/10.1080/00908310490438605

    Article  Google Scholar 

  69. McCarthy DMC, Glavatskih SB, Byheden Å (2009) Influence of oil type on the performance characteristics of a two-axial groove journal bearing. Lubr Sci 21:366–377

    Article  Google Scholar 

  70. Chauhan A, Sehgal R, Sharma RK (2010) Thermohydrodynamic analysis of elliptical journal bearing with different grade oils. Tribol Int 43:1970–1977. https://doi.org/10.1016/j.triboint.2010.03.017

    Article  Google Scholar 

  71. Simmons GF, Glavatskih SB (2011) Synthetic lubricants in hydrodynamic journal bearings: experimental results. Tribol Lett 42:109–115. https://doi.org/10.1007/s11249-011-9753-2

    Article  Google Scholar 

  72. Nikolakopoulos PG, Bompos DA (2015) Experimental measurements of journal bearing friction using mineral, synthetic, and bio-based lubricants. Lubricants 3:155–163. https://doi.org/10.3390/lubricants3020155

    Article  Google Scholar 

  73. Muzakkir SM, Hirani H, Thakre GD, Tyagi MR (2011) Tribological failure analysis of journal bearings used in sugar mills. Eng Fail Anal 18:2093–2103. https://doi.org/10.1016/j.engfailanal.2011.06.016

    Article  Google Scholar 

  74. Singla A, Chauhan A (2016) Evaluation of oil film pressure and temperature of an elliptical journal bearing—an experimental study. Tribol Ind 38:74–82

    Google Scholar 

  75. Dadouche A, Conlon MJ (2016) Operational performance of textured journal bearings lubricated with a contaminated fluid. Tribol Int 93:377–389. https://doi.org/10.1016/j.triboint.2015.09.022

    Article  Google Scholar 

  76. Marx N, Fernández L, Barceló F, Spikes H (2018) Shear thinning and hydrodynamic friction of viscosity modifier-containing oils. part i: shear thinning behaviour. Tribol Lett 66:1–14. https://doi.org/10.1007/s11249-018-1039-5

    Article  Google Scholar 

  77. Marx N, Fernández L, Barceló F, Spikes H (2018) Shear thinning and hydrodynamic friction of viscosity modifier-containing oils. part II: impact of shear thinning on journal bearing friction. Tribol Lett 66:1–11. https://doi.org/10.1007/s11249-018-1040-z

    Article  Google Scholar 

  78. Chowdhury MA, Mia MS, Kchaou M et al (2020) Friction coefficient and performance evaluation of plain journal bearing using SAE 5W–30 engine oil. Proc Inst Mech Eng Part J J Eng Tribol. https://doi.org/10.1177/1350650120903927

    Article  Google Scholar 

  79. Stunkel BW, Karol TJ, Donnelly SG (2004) Antioxidant, antiwear/extreme pressure additive compositions and lubricating compositions containing the same

  80. Finšgar M, Jackson J (2014) Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review. Corros Sci 86:17–41

    Article  Google Scholar 

  81. Bhattacharjee RC, Das NC (1996) Power law fluid model incorporated into elastohydrodynamic lubrication theory of line contact. Tribol Int 29:405–413

    Article  Google Scholar 

  82. Vijaysri M, Chhabra RP, Eswaran V (1999) Power-law fluid flow across an array of infinite circular cylinders: a numerical study. J Nonnewton Fluid Mech 87:263–282

    Article  MATH  Google Scholar 

  83. Safar ZS (1979) Dynamically loaded bearings operating with non-Newtonian lubricant films. Wear 55:295–304. https://doi.org/10.1016/0043-1648(79)90161-3

    Article  Google Scholar 

  84. Pinkus O, Sternlicht B (1961) Theory of hydrodynamic lubrication. McGraw-Hill, New York

    MATH  Google Scholar 

  85. Tayal SP, Sinhasan R, Singh DV (1981) Analysis of hydrodynamic journal bearings with non-newtonian power law lubricants by the finite element method. Wear 71:15–27. https://doi.org/10.1016/0043-1648(81)90136-8

    Article  MATH  Google Scholar 

  86. Tayal SP, Sinhasan R, Singh DV (1982) Finite element analysis of elliptical bearings lubricated by a non-Newtonian fluid. Wear 80:71–81

    Article  Google Scholar 

  87. Dien IK, Elrod HG (1983) A generalized steady-state reynolds equation for non-newtonian fluids, with application to journal bearings. J Tribol 105:385–390. https://doi.org/10.1115/1.3254619

    Article  Google Scholar 

  88. Johnson MW, Mangkoesoebroto S (1993) Analysis of lubrication theory for the power law fluid. J Tribol 115:71–77. https://doi.org/10.1115/1.2920988

    Article  Google Scholar 

  89. Tanner RI (1985) Engineering Rheology. Clarendon Press, Oxford

    MATH  Google Scholar 

  90. Buckholz RH (1985) On the role of a non-newtonian fluid in short bearing theory. J Tribol 107:68–74. https://doi.org/10.1115/1.3261004

    Article  Google Scholar 

  91. Buckholz RH (1986) Effoots of power—law, non-newtonian lubricants on load capacity and friction for plane slider bearings. J Tribol 108:86–91. https://doi.org/10.1115/1.3261149

    Article  Google Scholar 

  92. Buckholz RH, Lin JF (1986) The effect of journal bearing misalignment on load and cavitation for non-newtonian lubricants. J Tribol 108:645–654. https://doi.org/10.1115/1.3261295

    Article  Google Scholar 

  93. Jiin-Yuh J, Chong-Ching C (1988) Adiabatic analysis of finite width journal bearings with non-newtonian lubricants. Wear 122:63–75. https://doi.org/10.1016/0043-1648(88)90007-5

    Article  Google Scholar 

  94. Zhang C, Cheng HS (2000) Transient non-Newtonian thermohydrodynamic mixed lubrication of dynamically loaded journal bearings. J Tribol 122:156–161. https://doi.org/10.1115/1.555338

    Article  Google Scholar 

  95. Sharma SC, Jain SC, Sinhasan R, Sah PL (2001) Static and dynamic performance characteristics of orifice compensated hydrostatic flexible journal bearings with non-newtonian lubricants. Tribol Trans 44:242–248. https://doi.org/10.1080/10402000108982454

    Article  Google Scholar 

  96. Garg HC, Kumar V, Sharda HB (2010) Performance of slot-entry hybrid journal bearings considering combined influences of thermal effects and non-Newtonian behavior of lubricant. Tribol Int 43:1518–1531. https://doi.org/10.1016/j.triboint.2010.02.013

    Article  Google Scholar 

  97. Mongkolwongrojn M, Arunmetta P (2002) Theoretical characteristics of hydrodynamic journal bearings lubricated with soybean-based oil. J Synth Lubr 19:213–228. https://doi.org/10.1002/jsl.3000190304

    Article  Google Scholar 

  98. Mongkolwongrojn M, Aiumpronsin C (2010) Stability analysis of rough journal bearings under TEHL with non-Newtonian lubricants. Tribol Int 43:1027–1034. https://doi.org/10.1016/j.triboint.2009.12.039

    Article  Google Scholar 

  99. Khatri CB, Sharma SC (2016) Influence of textured surface on the performance of non-recessed hybrid journal bearing operating with non-Newtonian lubricant. Tribol Int 95:221–235. https://doi.org/10.1016/j.triboint.2015.11.017

    Article  Google Scholar 

  100. Lin JR, Chu LM, Hung TC, Wang PY (2016) Derivation of two-dimensional non-Newtonian Reynolds equation and application to power-law film slider bearings: Rabinowitsch fluid model. Appl Math Model 40:8832–8841. https://doi.org/10.1016/j.apm.2016.04.030

    Article  MathSciNet  MATH  Google Scholar 

  101. Lin JR, Hung TC, Lin CH (2019) Linear stability analysis of journal bearings lubricated with a non-Newtonian rabinowitsch fluid. J Mech 35:107–112. https://doi.org/10.1017/jmech.2017.48

    Article  Google Scholar 

  102. Yadav SK, Rajput AK, Ram N, Sharma SC (2019) Stability analysis of a rigid rotor supported by two-lobe hydrodynamic journal bearings operating with a non-Newtonian lubricant. Proc Inst Mech Eng Part J J Eng Tribol 233:884–898. https://doi.org/10.1177/1350650118806377

    Article  Google Scholar 

  103. Das S, Guha SK, Chattopadhyay AK (2002) On the steady-state performance of misaligned hydrodynamic journal bearings lubricated with micropolar fluids. Tribol Int 35:201–210. https://doi.org/10.1016/S0301-679X(01)00065-2

    Article  Google Scholar 

  104. Eringen AC (1964) Simple microfluids. Int J Eng Sci 2:205–217

    Article  MathSciNet  MATH  Google Scholar 

  105. Eringen A (1966) Theory of micropolar fluids. Indiana Univ Mathe J 16:1–18. https://doi.org/10.1512/iumj.1967.16.16001

    Article  MathSciNet  Google Scholar 

  106. Naduvinamani NB, Biradar TV (2007) Effects of surface roughness on porous inclined slider bearings lubricated with micropolar fluids. J Mar Sci Technol 15:278–286

    Article  Google Scholar 

  107. Shukla JB, Isa M (1975) Generalized Reynolds equation for micropolar lubricants and its application to optimum one-dimensional slider bearings: effects of solid-particle additives in solution. J Mech Eng Sci 17:280–284

    Article  Google Scholar 

  108. Zaheeruddin K, Isa M (1978) Micropolar fluid lubrication of one-dimensional journal bearings. Wear 50:211–220

    Article  Google Scholar 

  109. Khonsari MM, Brewe DE (1989) On the performance of finite journal bearings lubricated with micropolar fluids. Tribol Trans 32:155–160. https://doi.org/10.1080/10402008908981874

    Article  Google Scholar 

  110. Wang XL, Zhu KQ (2006) Numerical analysis of journal bearings lubricated with micropolar fluids including thermal and cavitating effects. Tribol Int 39:227–237. https://doi.org/10.1016/j.triboint.2005.01.028

    Article  Google Scholar 

  111. Prabhakaran Nair K, Sukumaran Nair VP, Jayadas NH (2007) Static and dynamic analysis of elastohydrodynamic elliptical journal bearing with micropolar lubricant. Tribol Int 40:297–305. https://doi.org/10.1016/j.triboint.2005.09.017

    Article  Google Scholar 

  112. Rahmatabadi AD, Zare Mehrjardi M, Fazel MR (2010) Performance analysis of micropolar lubricated journal bearings using GDQ method. Tribol Int 43:2000–2009. https://doi.org/10.1016/j.triboint.2010.05.002

    Article  Google Scholar 

  113. Rajasekhar Nicodemus E, Sharma SC (2011) Orifice compensated multirecess hydrostatic/hybrid journal bearing system of various geometric shapes of recess operating with micropolar lubricant. Tribol Int 44:284–296. https://doi.org/10.1016/j.triboint.2010.10.026

    Article  Google Scholar 

  114. Sharma SC, Ram N (2011) Influence of micropolar lubricants on the performance of slot-entry hybrid journal bearing. Tribol Int 44:1852–1863. https://doi.org/10.1016/j.triboint.2011.07.006

    Article  Google Scholar 

  115. Ram N, Sharma SC (2012) Analysis of orifice compensated non-recessed hole-entry hybrid journal bearing operating with micropolar lubricants. Tribol Int 52:132–143. https://doi.org/10.1016/j.triboint.2012.03.012

    Article  Google Scholar 

  116. Dhawan R, Verma S (2014) Analyzing Micropolar Lubrication in Noncircular Hybrid Journal Bearings. Tribol Trans 57:182–189. https://doi.org/10.1080/10402004.2013.859337

    Article  Google Scholar 

  117. Budheeja K, Verma S (2017) A comparative linear and nonlinear stability analysis of hybrid journal bearing operating with micropolar lubricant. Tribol Online 12:203–220. https://doi.org/10.2474/trol.12.203

    Article  Google Scholar 

  118. Khatak P, Garg HC (2018) Investigation of the micropolar lubricant and thermal effects in the slot entry hybrid journal bearings. Proc Inst Mech Eng Part C J Mech Eng Sci 232:2103–2116. https://doi.org/10.1177/0954406217713519

    Article  Google Scholar 

  119. Meybodi RR, Shooroki AR, Mehrjardi MZ (2018) Thermo-hydrodynamic performance of tilted non-circular micropolar lubricated journal bearings. Ind Lubricat Tribol 70:711–723

    Article  Google Scholar 

  120. Stokes VK (1966) Couple stresses in fluids. Phys Fluids 9:1709–1715. https://doi.org/10.1063/1.1761925

    Article  Google Scholar 

  121. Ariman TTND, Turk MA, Sylvester ND (1974) Applications of microcontinuum fluid mechanics. Int J Eng Sci 12:273–293

    Article  MATH  Google Scholar 

  122. Lin JR (1998) Squeeze film characteristics of finite journal bearings: couple stress fluid model. Tribol Int 31:201–207

    Article  Google Scholar 

  123. Mokhiamer UM, Crosby WA, El-Gamal HA (1999) A study of a journal bearing lubricated by fluids with couple stress considering the elasticity of the liner. Wear 224:194–201

    Article  Google Scholar 

  124. Das NC (1998) A study of optimum load-bearing capacity for slider bearings lubricated with couple stress fluids in magnetic field. Tribol Int 31:393–400

    Article  Google Scholar 

  125. Wang XL, Zhu KQ, Wen SZ (2001) Thermohydrodynamic analysis of journal bearings lubricated with couple stress fluids. Tribol Int 34:335–343. https://doi.org/10.1016/S0301-679X(01)00022-6

    Article  Google Scholar 

  126. Elsharkawy AA (2005) Effects of lubricant additives on the performance of hydrodynamically lubricated journal bearings. Tribol Lett 18:63–73. https://doi.org/10.1007/s11249-004-1758-7

    Article  Google Scholar 

  127. Jaya Chandra Reddy G, Eswara Reddy C, Rama Krishna Prasad K (2008) Effect of viscosity variation on the squeeze film performance of a narrow hydrodynamic journal bearing operating with couple stress fluids. Proc Inst Mech Eng Part J J Eng Tribol 222:141–150. https://doi.org/10.1243/13506501JET327

    Article  Google Scholar 

  128. Crosby WA, Chetti B (2009) The static and dynamic characteristics of a two-lobe journal bearing lubricated with couple-stress fluid. Tribol Trans 52:262–268. https://doi.org/10.1080/10402000802527773

    Article  Google Scholar 

  129. Chetti B (2011) Static and dynamic analysis of hydrodynamic four-lobe journal bearing with couple stress lubricants. Jordan J Mech Indust Eng 5:23–28

    Google Scholar 

  130. Some S, Guha SK (2018) Effect of slip and percolation of polar additives of coupled-stress lubricant on the steady-state characteristics of double-layered porous journal bearings. J Brazil Soc Mech Sci Eng. https://doi.org/10.1007/s40430-018-1018-7

    Article  Google Scholar 

  131. Kumar Lambha S, Kumar V, Verma R (2019) Elastohydrodynamic analysis of couple stress lubricated cylindrical journal bearing. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1240/1/012165

    Article  Google Scholar 

  132. Rohilla PK, Verma R, Verma S (2019) Performance analysis of couple stress fluid operated elastic hydrodynamic journal bearing. Tribol Online 14:143–154. https://doi.org/10.2474/trol.14.143

    Article  Google Scholar 

  133. Zheng L, Zhu H, Zhu J, Deng Y (2020) Effects of oil film thickness and viscosity on the performance of misaligned journal bearings with couple stress lubricants. Tribol Int 146:106229. https://doi.org/10.1016/j.triboint.2020.106229

    Article  Google Scholar 

  134. Kumar A, Kakoty SK (2019) Effect of couple-stress parameter on the steady state performance parameters of two-lobe journal bearing operating with non- Newtonian lubricant. Mater Today Proc 24:473–482

    Article  Google Scholar 

  135. Ram N (2017) Study of constant flow valve compensated hydrostatic hole-entry journal bearings with couple stress lubricants. Int J Des Eng 7:142. https://doi.org/10.1504/ijde.2017.10010628

    Article  Google Scholar 

  136. Lahmar M (2005) Elastohydrodynamic analysis of double-layered journal bearings lubricated with couple-stress fluids. Proc Inst Mech Eng Part J J Eng Tribol 219:145–165

    Article  Google Scholar 

  137. Mahdi MA, Hussein AW (2019) Investigation the combined effects of wear and turbulent on the performance of hydrodynamic journal bearing operating with couple stress fluids. Int J Struct Integrity 10:825–837

    Article  Google Scholar 

  138. Mortier RM, Orszulik ST (1992) Chemistry and technology of lubricants. VCH Publishers Inc., New York

    Book  Google Scholar 

  139. Nagendramma P, Kaul S (2012) Development of ecofriendly/biodegradable lubricants: an overview. Renew Sustain Energy Rev 16:764–774

    Article  Google Scholar 

  140. Gansheimer J, Holinski R (1973) Molybdenum disulfide in oils and greases under boundary conditions. ASME J Lubricat Technol 95:242–246

    Article  Google Scholar 

  141. Choi Y, Lee C, Hwang Y et al (2009) Tribological behavior of copper nanoparticles as additives in oil. Curr Appl Phys 9:e124-127

    Article  Google Scholar 

  142. Zhou J, Wu Z, Zhang Z et al (2000) Tribological behavior and lubricating mechanism of Cu nanoparticles in oil. Tribol Lett 8:213–218

    Article  Google Scholar 

  143. Luo T, Wei X, Huang X et al (2014) Tribological properties of Al2O3 nanoparticles as lubricating oil additives. Ceram Int 40:7143–7149

    Article  Google Scholar 

  144. Aldana PU, Dassenoy F, Vacher B et al (2016) WS2 nanoparticles anti-wear and friction reducing properties on rough surfaces in the presence of ZDDP additive. Tribol Int 102:213–221

    Article  Google Scholar 

  145. Gupta RN, Harsha AP (2018) Antiwear and extreme pressure performance of castor oil with nano-additives. Proc Inst Mech Eng Part J J Eng Tribol 232:1055–1067

    Article  Google Scholar 

  146. Rahmati B, Sarhan AA, Sayuti M (2014) Morphology of surface generated by end milling AL6061-T6 using molybdenum disulfide (MoS2) nanolubrication in end milling machining. J Cleaner Prod 66:685–691

    Article  Google Scholar 

  147. Azman NF, Samion S (2019) Dispersion stability and lubrication mechanism of nanolubricants: a review. Int J Precision Eng Manuf Green Technol 6:393–414. https://doi.org/10.1007/s40684-019-00080-x

    Article  Google Scholar 

  148. Sgroi M, Gili F, Mangherini D et al (2015) Friction reduction benefits in valve-train system using IF-MoS2 added engine oil. Tribol Trans 58:207–214

    Article  Google Scholar 

  149. Chou R, Battez AH, Cabello JJ et al (2010) Tribological behavior of polyalphaolefin with the addition of nickel nanoparticles. Tribol Int 43:2327–2332

    Article  Google Scholar 

  150. Cho Y, Park J, Ku B et al (2012) Synergistic effect of a coating and nano-oil lubricant on the tribological properties of friction surfaces. Int J Precis Eng Manuf 13:97–102. https://doi.org/10.1007/s12541-012-0013-7

    Article  Google Scholar 

  151. Chu HY, Hsu WC, Lin JF (2010) Scuffing mechanism during oil-lubricated block-on-ring test with diamond nanoparticles as oil additive. Wear 268:1423–1433

    Article  Google Scholar 

  152. Sia SY, Sarhan AA (2014) Morphology investigation of worn bearing surfaces using SiO2 nanolubrication system. Int J Adv Manuf Technol 70:1063–1071

    Article  Google Scholar 

  153. Qiu S, Zhou Z, Dong J, Chen G (2001) Preparation of Ni nanoparticles and evaluation of their tribological performance as potential additives in oils. J Tribol 123:441–443. https://doi.org/10.1115/1.1286152

    Article  Google Scholar 

  154. Lee J, Cho S, Hwang Y et al (2009) Application of fullerene-added nano-oil for lubrication enhancement in friction surfaces. Tribol Int 42:440–447. https://doi.org/10.1016/j.triboint.2008.08.003

    Article  Google Scholar 

  155. Lee CG, Hwang YJ, Choi YM et al (2009) A study on the tribological characteristics of graphite nano lubricants. Int J Precis Eng Manuf 10:85–90

    Article  Google Scholar 

  156. Lee K, Hwang Y, Cheong S et al (2009) Understanding the role of nanoparticles in nano-oil lubrication. Tribol Lett 35:127–131. https://doi.org/10.1007/s11249-009-9441-7

    Article  Google Scholar 

  157. Vadiraj A, Manivasagam G, Kamani K, Sreenivasan VS (2012) Effect of nano oil additive proportions on friction and wear performance of automotive materials. Tribol Ind 34:3–10

    Google Scholar 

  158. Padgurskas J, Rukuiza R, Prosyčevas I, Kreivaitis R (2013) Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles. Tribol Int 60:224–232. https://doi.org/10.1016/j.triboint.2012.10.024

    Article  Google Scholar 

  159. Hu K, Cai Y, Hu X, Xu Y (2013) Synergistic lubrication of MoS2 particles with different morphologies in liquid paraffin. Ind Lubricat Tribol 65:143–149. https://doi.org/10.1108/00368791311311141

    Article  Google Scholar 

  160. Çelik ON, Ay N, Göncü Y (2013) Effect of nano hexagonal boron nitride lubricant additives on the friction and wear properties of AISI 4140 steel. Part Sci Technol 31:501–506. https://doi.org/10.1080/02726351.2013.779336

    Article  Google Scholar 

  161. Jeng YR, Huang YH, Tsai PC, Hwang GL (2014) Tribological properties of carbon nanocapsule particles as lubricant additive. J Tribol 136:1–9. https://doi.org/10.1115/1.4027994

    Article  Google Scholar 

  162. Baskar S, Sriram G (2014) Tribological behavior of journal bearing material under different lubricants. Tribol Ind 36:127–133

    Google Scholar 

  163. Ghaednia H, Hossain MS, Jackson RL (2016) Tribological performance of silver nanoparticle-enhanced polyethylene glycol lubricants. Tribol Trans 59:585–592. https://doi.org/10.1080/10402004.2015.1092623

    Article  Google Scholar 

  164. Marko M, Kyle J, Branson B, Terrell E (2015) Tribological improvements of dispersed nanodiamond additives in lubricating mineral oil. J Tribol 137:1–7. https://doi.org/10.1115/1.4028554

    Article  Google Scholar 

  165. Bhaumik S, Pathak SD (2015) Analysis of anti-wear properties of cuo nanoparticles as friction modifiers in mineral oil (460cst viscosity) using pin-on-disk tribometer. Tribol Ind 37:196–203

    Google Scholar 

  166. Jatti VS, Singh TP (2015) Copper oxide nano-particles as friction-reduction and anti-wear additives in lubricating oil. J Mech Sci Technol 29:793–798. https://doi.org/10.1007/s12206-015-0141-y

    Article  Google Scholar 

  167. Wan Q, Jin Y, Sun P, Ding Y (2015) Tribological behaviour of a lubricant oil containing boron nitride nanoparticles. Proc Eng 102:1038–1045. https://doi.org/10.1016/j.proeng.2015.01.226

    Article  Google Scholar 

  168. Laad M, Jatti VKS (2018) Titanium oxide nanoparticles as additives in engine oil. J King Saud Univ Eng Sci 30:116–122. https://doi.org/10.1016/j.jksues.2016.01.008

    Article  Google Scholar 

  169. Baskar S, Sriram G, Arumugam S (2016) The use of d-optimal design for modeling and analyzing the tribological characteristics of journal bearing materials lubricated by nano-based biolubricants. Tribol Trans 59:44–54. https://doi.org/10.1080/10402004.2015.1063179

    Article  Google Scholar 

  170. Lu Z, Cao Z, Hu E et al (2019) Preparation and tribological properties of WS2 and WS2/TiO2 nanoparticles. Tribol Int 130:308–316. https://doi.org/10.1016/j.triboint.2018.09.030

    Article  Google Scholar 

  171. Ilie F, Covaliu C (2016) Tribological properties of the lubricant containing titanium dioxide nanoparticles as an additive. Lubricants 4:12–14. https://doi.org/10.3390/lubricants4020012

    Article  Google Scholar 

  172. Charoo MS, Wani MF (2016) Tribological properties of IF-MoS2 nanoparticles as lubricant additive on cylinder liner and piston ring tribo-pair. Tribol Ind 38:156–162

    Google Scholar 

  173. Ali MKA, Xianjun H, Elagouz A et al (2016) Minimizing of the boundary friction coefficient in automotive engines using Al2O3 and TiO2 nanoparticles. J Nanopart Res. https://doi.org/10.1007/s11051-016-3679-4

    Article  Google Scholar 

  174. Ali MKA, Fuming P, Younus HA et al (2018) Fuel economy in gasoline engines using Al2O3/TiO2 nanomaterials as nanolubricant additives. Appl Energy 211:461–478. https://doi.org/10.1016/j.apenergy.2017.11.013

    Article  Google Scholar 

  175. Ali MKA, Xianjun H, Mai L et al (2016) Reducing frictional power losses and improving the scuffing resistance in automotive engines using hybrid nanomaterials as nano-lubricant additives. Wear 364–365:270–281. https://doi.org/10.1016/j.wear.2016.08.005

    Article  Google Scholar 

  176. Umer J, Morris N, Leighton M et al (2019) Nano and microscale contact characteristics of tribofilms derived from fully formulated engine oil. Tribol Int 131:620–630. https://doi.org/10.1016/j.triboint.2018.11.007

    Article  Google Scholar 

  177. Guzman Borda FL, Ribeiro de Oliveira SJ, Seabra Monteiro Lazaro LM, Kalab Leiróz AJ (2018) Experimental investigation of the tribological behavior of lubricants with additive containing copper nanoparticles. Tribol Int 117:52–58. https://doi.org/10.1016/j.triboint.2017.08.012

    Article  Google Scholar 

  178. Saravanakumar N, Jothi Saravanan ML, Barathkumar KE et al (2019) Development and testing of nano particulate lubricant for worm gear application. J Mech Sci Technol 33:1785–1791. https://doi.org/10.1007/s12206-019-0330-1

    Article  Google Scholar 

  179. Saini V, Bijwe J, Seth S, Ramakumar SSV (2020) Role of base oils in developing extreme pressure lubricants by exploring nano-PTFE particles. Tribol Int. https://doi.org/10.1016/j.triboint.2019.106071

    Article  Google Scholar 

  180. Kotia A, Ghosh GK, Srivastava I et al (2019) Mechanism for improvement of friction/wear by using Al2O3 and SiO2/Gear oil nanolubricants. J Alloy Compd 782:592–599. https://doi.org/10.1016/j.jallcom.2018.12.215

    Article  Google Scholar 

  181. Mashhadi Keshtiban P, Sheydaei Govarchin Ghaleh S, Alimirzaloo V (2019) Lubrication efficiency of vegetable oil nano-lubricants and solid powder lubricants. Proc Inst Mech Eng Part L J Mater Des Appl 233:1384–1392. https://doi.org/10.1177/1464420718754357

    Article  Google Scholar 

  182. Peng DX, Kang Y, Chen CH et al (2009) The tribological behavior of modified diamond nanoparticles in liquid paraffin. Ind Lubricat Tribol 61:213–219. https://doi.org/10.1108/00368790910960057

    Article  Google Scholar 

  183. Shen M, Luo J, Wen S (2001) The tribological properties of oils added with diamond nano-particles. Tribol Trans 44:494–498. https://doi.org/10.1080/10402000108982487

    Article  Google Scholar 

  184. Xu X, Choi Su S, Wang X (1999) Thermal conductivity of nanoparticle - fluid mixture. J Thermophys Heat Transfer 13:474–480

    Article  Google Scholar 

  185. Das SK, Choi SU, Patel HE (2006) Heat transfer in nanofluids—a review. Heat Transfer Eng 27:3–19

    Article  Google Scholar 

  186. Goyal D, Dang RK, Dhami SS, Chauhan A (2017) Effect of nanoparticles based lubricants on static thermal behaviour of journal bearings: a review. Res J Eng Technol 8:149. https://doi.org/10.5958/2321-581x.2017.00023.x

    Article  Google Scholar 

  187. Nicoletti R (2014) The importance of the heat capacity of lubricants with nanoparticles in the static behavior of journal bearings. J Tribol 136:1–5. https://doi.org/10.1115/1.4027861

    Article  Google Scholar 

  188. Prabhakaran Nair K, Ahmed MS, Al-qahtani ST (2009) Static and dynamic analysis of hydrodynamic journal bearing operating under nano lubricants. Int J Nanoparticles 2:251–262

    Article  Google Scholar 

  189. Solghar AA (2015) Investigation of nanoparticle additive impacts on thermohydrodynamic characteristics of journal bearings. Proc Inst Mech Eng Part J J Eng Tribol 229:1176–1186. https://doi.org/10.1177/1350650115574734

    Article  Google Scholar 

  190. Gunnuang W, Aiumpornsin C, Mongkolwongrojn M (2015) Effect of nanoparticle additives on journal bearing lubricated with non-Newtonian Carreau fluid. Appl Mech Mater 751:137–142. https://doi.org/10.4028/www.scientific.net/amm.751.137

    Article  Google Scholar 

  191. Kalakada SB, Kumarapillai PNN, Rajendra Kumar PK (2015) Static characteristics of thermohydrodynamic journal bearing operating under lubricants containing nanoparticles. Ind Lubricat Tribol 67:38–46. https://doi.org/10.1108/ILT-01-2013-0015

    Article  Google Scholar 

  192. Prabhakaran Nair K, Rajendra Kumar PK, Sreedhar Babu K (2011) Thermohydrodynamic analysis of journal bearing operating under nanolubricants. Am Soc Mech Eng Tribol Div TRIB. https://doi.org/10.1115/IJTC2011-61244

    Article  Google Scholar 

  193. Kalakada SB, Kumarapillai PN, Perikinalil RK (2012) Analysis of static and dynamic performance characteristics of THD journal bearing operating under lubricants containing nanoparticles. Int J Precis Eng Manuf 13:1869–1876. https://doi.org/10.1007/s12541-012-0245-6

    Article  Google Scholar 

  194. Binu KG, Shenoy BS, Rao DS, Pai R (2014) Static characteristics of a fluid film bearing with TiO2 based nanolubricant using the modified Krieger-Dougherty viscosity model and couple stress model. Tribol Int 75:69–79. https://doi.org/10.1016/j.triboint.2014.03.013

    Article  Google Scholar 

  195. Binu KG, Shenoy BS, Rao DS, Pai R (2014) A variable viscosity approach for the evaluation of load carrying capacity of oil lubricated journal bearing with TiO2 nanoparticles as lubricant additives. Proc Mater Sci 6:1051–1067. https://doi.org/10.1016/j.mspro.2014.07.176

    Article  Google Scholar 

  196. Abass BA, Mohammed NF (2017) Thermohydrodynamic characteristics of worn journal bearing lubricated with oil containing nanoparticles additive abstract: keywords: introduction. Al-Nahrain J Eng Sci 20:526–543

    Google Scholar 

  197. Kumar A, Kakoty SK (2017) A variable viscosity approach for the analysis of steady state and dynamic characteristics of two-lobe journal bearing with TiO2 based nanolubricant. In: ASME 2017 Gas Turbine India Conference, GTINDIA 2017, vol 2, pp 1–9. https://doi.org/10.1115/GTINDIA2017-4661

  198. Kumar A, Kakoty SK (2019) A variable viscosity technique for the analysis of static and dynamic performance parameters of three-lobe fluid film bearing operating with TiO2-based nanolubricant, pp 1–16. https://doi.org/10.1007/978-981-13-6287-3_1

  199. Suryawanshi SR, Pattiwar JT (2018) Effect of TiO2 nanoparticles blended with lubricating oil on the tribological performance of the journal bearing. Tribol Ind 40:370–391. https://doi.org/10.24874/ti.2018.40.03.04

    Article  Google Scholar 

  200. Jamalabadi MYA, Alamian R, Yan WM et al (2019) Effects of nanoparticle enhanced lubricant films in thermal design of plain journal bearings at high reynolds numbers. Symmetry 11:1–18. https://doi.org/10.3390/sym11111353

    Article  Google Scholar 

  201. Shenoy BS, Binu KG, Pai R et al (2012) Effect of nanoparticles additives on the performance of an externally adjustable fluid film bearing. Tribol Int 45:38–42. https://doi.org/10.1016/j.triboint.2011.10.004

    Article  Google Scholar 

  202. Rao TVVLN, Sufian S, Mohamed NM (2013) Analysis of nanoparticle additive couple stress fluids in three-layered journal bearing. J Phys: Conf Ser. https://doi.org/10.1088/1742-6596/431/1/012023

    Article  Google Scholar 

  203. Baskar S, Sriram G, Arumugam S (2017) Tribological analysis of a hydrodynamic journal bearing under the influence of synthetic and biolubricants. Tribol Trans 60:428–436. https://doi.org/10.1080/10402004.2016.1176285

    Article  Google Scholar 

  204. Ramaganesh R, Baskar S, Sriram G et al (2020) Finite element analysis of a journal bearing lubricated with nano lubricants. FME Trans 48:476–481. https://doi.org/10.5937/fme2002476R

    Article  Google Scholar 

  205. Baskar S, Sriram G, Arumugam S (2018) Fuzzy logic model to predict oil-film pressure in a hydrodynamic journal bearing lubricated under the influence of nano-based bio-lubricants. Energy Sour Part A Recover Utiliz Environ Effects 40:1583–1590. https://doi.org/10.1080/15567036.2018.1486479

    Article  Google Scholar 

  206. Kornaev A, Savin L, Kornaeva E, Fetisov A (2016) Influence of the ultrafine oil additives on friction and vibration in journal bearings. Tribol Int 101:131–140. https://doi.org/10.1016/j.triboint.2016.04.014

    Article  Google Scholar 

  207. Katpatal DC, Andhare AB, Padole PM (2020) Performance of nano-bio-lubricants, ISO VG46 oil and its blend with Jatropha oil in statically loaded hydrodynamic plain journal bearing. Proc Instit Mech Eng Part J J Eng Tribol 234:386–400. https://doi.org/10.1177/1350650119864242

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Kumar Dang.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, R.K., Goyal, D., Chauhan, A. et al. Numerical and Experimental Studies on Performance Enhancement of Journal Bearings Using Nanoparticles Based Lubricants. Arch Computat Methods Eng 28, 3887–3915 (2021). https://doi.org/10.1007/s11831-021-09538-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09538-1

Navigation