Skip to main content
Log in

Synthesis and Application of Modified Orchard Waste Biochar for Efficient Scavenging of Copper from Aqueous Solutions

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Efficient adsorbents were fabricated by modifying the orchard waste biochar (BC) to produce zero-valent iron composited BC (BC/Fe0) and phosphorus embedded BC (BC/P). The efficacy of these adsorbents for copper [Cu(II)] removal from aqueous media was investigated via pH, kinetics, and adsorption batch trials. The solution pH 7 was found optimum for the highest Cu(II) removal. Elovich model was fitted well to the Cu(II) kinetics adsorption and higher initial sorption rate 79.44, 75.71, 72.28, 61.60 mg g−1 min−1 for BC/Fe0, BC, AC, and BC/P, respectively, was observed than other kinetic models. Langmuir, Freundlich, and Redlich–Peterson isotherm models were applied to the experimental data and Langmuir model fitted well predicting the adsorption capacity of 427.11 mg g−1. The BC became more selective in copper removal after the introduction of Fe0, and a higher removal rate of Cu(II) was observed in a short time compared to the other tested adsorbents. Therefore, zero-valent iron composited orchard waste-derived biochar as a green and cost-effective adsorbent can open new ways for the efficient removal of Cu(II) from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nriagu, J.O.: A history of global metal pollution. Science 272, 223–223 (1996). https://doi.org/10.1126/science.272.5259.223

    Article  Google Scholar 

  2. Mushtaq, M.; Bhatti, H.N.; Iqbal, M.; Noreen, S.: Eriobotrya japonica seed biocomposite efficiency for copper adsorption: isotherms, kinetics, thermodynamic and desorption studies. J. Environ. Manag. 176, 21–33 (2016). https://doi.org/10.1016/j.jenvman.2016.03.013

    Article  Google Scholar 

  3. Demiral, H.; Güngör, C.: Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse. J. Clean. Prod. 124, 103–113 (2016). https://doi.org/10.1016/j.jclepro.2016.02.084

    Article  Google Scholar 

  4. Zhiani, R.; Saadati, S.M.; Zahedifar, M.; Sadeghzadeh, S.M.: Synthesis of new class of copper(II) complex-based FeNi3/KCC-1 for the N-formylation of amines using dihydrogen and carbon dioxide. Catal. Lett. 148, 2487–2500 (2018). https://doi.org/10.1007/s10562-018-2475-4

    Article  Google Scholar 

  5. Amin, M.T.; Alazba, A.A.; Shafiq, M.: Removal of copper and lead using banana biochar in batch adsorption systems: isotherms and kinetic studies. Arab. J. Sci. Eng. 43, 5711–5722 (2018). https://doi.org/10.1007/s13369-017-2934-z

    Article  Google Scholar 

  6. Ahmad, M.; Usman, A.R.A.; Al-Faraj, A.S.; Ahmad, M.; Sallam, A.; Al-Wabel, M.I.: Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants. Chemosphere 194, 327–339 (2018). https://doi.org/10.1016/j.chemosphere.2017.11.156

    Article  Google Scholar 

  7. Rahman, M.S.; Islam, M.R.: Effects of pH on isotherms modeling for Cu(II) ions adsorption using maple wood sawdust. Chem. Eng. J. 149, 273–280 (2009). https://doi.org/10.1016/j.cej.2008.11.029

    Article  Google Scholar 

  8. Demirkiran, N.: Copper adsorption by natural manganese dioxide. Trans. Nonferr. Met. Soc. China 25, 647–653 (2015). https://doi.org/10.1016/S1003-6326(15)63648-2

    Article  Google Scholar 

  9. Mohammed, A.A.; Samaka, I.S.: Bentonite coated with magnetite Fe3O4 nanoparticles as a novel adsorbent for copper (II) ions removal from water/wastewater. Environ. Technol. Innov. 10, 162–174 (2018). https://doi.org/10.1016/j.eti.2018.02.005

    Article  Google Scholar 

  10. Donoso, A.; Cruces, P.; Camacho, J.; Ríos, J.C.; Paris, E.; Mieres, J.J.: Acute respiratory distress syndrome resulting from inhalation of powdered copper. Clin. Toxicol. 45, 714–716 (2007). https://doi.org/10.1080/15563650701438912

    Article  Google Scholar 

  11. Lee, J.-S.; Chon, H.-T.; Kim, K.-W.: Human risk assessment of As, Cd, Cu and Zn in the abandoned metal mine site. Environ. Geochem. Health 27, 185–191 (2005). https://doi.org/10.1007/s10653-005-0131-6

    Article  Google Scholar 

  12. Egorova, K.S.; Ananikov, V.P.: Which metals are green for catalysis? Comparison of the toxicities of Ni, Cu, Fe, Pd, Pt, Rh, and Au salts. Angew. Chem. Int. Ed. 55, 12150–12162 (2016). https://doi.org/10.1002/anie.201603777

    Article  Google Scholar 

  13. Shahzad, A.; Rasool, K.; Miran, W.; Nawaz, M.; Jang, J.; Mahmoud, K.A.; Lee, D.S.: Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water. ACS Sustain. Chem. Eng. 5, 11481–11488 (2017). https://doi.org/10.1021/acssuschemeng.7b02695

    Article  Google Scholar 

  14. Hassaan, M.A.; Nemr, A.E.; Madkour, F.F.: Environmental assessment of heavy metal pollution and human health risk. Presented at the (2016)

  15. Ahluwalia, S.S.; Goyal, D.: Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour. Technol. 98, 2243–2257 (2007). https://doi.org/10.1016/j.biortech.2005.12.006

    Article  Google Scholar 

  16. Wan, M.-W.; Kan, C.-C.; Rogel, B.D.; Dalida, M.L.P.: Adsorption of copper (II) and lead (II) ions from aqueous solution on chitosan-coated sand. Carbohydr. Polym. 80, 891–899 (2010). https://doi.org/10.1016/j.carbpol.2009.12.048

    Article  Google Scholar 

  17. Wah Chu, K.; Chow, K.L.: Synergistic toxicity of multiple heavy metals is revealed by a biological assay using a nematode and its transgenic derivative. Aquat. Toxicol. 61, 53–64 (2002). https://doi.org/10.1016/S0166-445X(02)00017-6

    Article  Google Scholar 

  18. Wu, F.-C.; Tseng, R.-L.; Juang, R.-S.: A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals. J. Environ. Manag. 91, 798–806 (2010). https://doi.org/10.1016/j.jenvman.2009.10.018

    Article  Google Scholar 

  19. Li, J.; Hu, J.; Sheng, G.; Zhao, G.; Huang, Q.: Effect of pH, ionic strength, foreign ions and temperature on the adsorption of Cu(II) from aqueous solution to GMZ bentonite. Colloids Surf. A Physicochem. Eng. Asp. 349, 195–201 (2009). https://doi.org/10.1016/j.colsurfa.2009.08.018

    Article  Google Scholar 

  20. Zahedifar, M.; Seyedi, N.; Salajeghe, M.; Shafiei, S.: Nanomagnetic biochar dots coated silver NPs (BCDs-Ag/MNPs): a highly efficient catalyst for reduction of organic dyes. Mater. Chem. Phys. 246, 122789 (2020). https://doi.org/10.1016/j.matchemphys.2020.122789

    Article  Google Scholar 

  21. Jones, D.L.; Rousk, J.; Edwards-Jones, G.; DeLuca, T.H.; Murphy, D.V.: Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 45, 113–124 (2012). https://doi.org/10.1016/j.soilbio.2011.10.012

    Article  Google Scholar 

  22. Batista, E.M.C.C.; Shultz, J.; Matos, T.T.S.; Fornari, M.R.; Ferreira, T.M.; Szpoganicz, B.; de Freitas, R.A.; Mangrich, A.S.: Effect of surface and porosity of biochar on water holding capacity aiming indirectly at preservation of the Amazon biome. Sci. Rep. 8, 1–9 (2018). https://doi.org/10.1038/s41598-018-28794-z

    Article  Google Scholar 

  23. Jian, X.; Zhuang, X.; Li, B.; Xu, X.; Wei, Z.; Song, Y.; Jiang, E.: Comparison of characterization and adsorption of biochars produced from hydrothermal carbonization and pyrolysis. Environ. Technol. Innov. 10, 27–35 (2018). https://doi.org/10.1016/j.eti.2018.01.004

    Article  Google Scholar 

  24. Deem, L.M.; Crow, S.E.: Biochar. In: Reference Module in Earth Systems and Environmental Sciences. Elsevier, Amsterdam (2017)

  25. Chatterjee, S.; Lim, S.-R.; Woo, S.H.: Removal of reactive black 5 by zero-valent iron modified with various surfactants. Chem. Eng. J. 160, 27–32 (2010). https://doi.org/10.1016/j.cej.2010.02.045

    Article  Google Scholar 

  26. Zhou, Y.; Gao, B.; Zimmerman, A.R.; Chen, H.; Zhang, M.; Cao, X.: Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresour. Technol. 152, 538–542 (2014). https://doi.org/10.1016/j.biortech.2013.11.021

    Article  Google Scholar 

  27. Aklil, A.; Mouflih, M.; Sebti, S.: Removal of heavy metal ions from water by using calcined phosphate as a new adsorbent. J. Hazard. Mater. 112, 183–190 (2004). https://doi.org/10.1016/j.jhazmat.2004.05.018

    Article  Google Scholar 

  28. Watanabe, F.S.; Olsen, S.R.: Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil 1. Soil Sci. Soc. Am. J. 29, 677–678 (1965). https://doi.org/10.2136/sssaj1965.03615995002900060025x

    Article  Google Scholar 

  29. Johnson, K.S.; Petty, R.L.: Determination of phosphate in seawater by flow injection analysis with injection of reagent. Anal. Chem. 54, 1185–1187 (1982). https://doi.org/10.1021/ac00244a039

    Article  Google Scholar 

  30. Zahedifar, M.; Pouramiri, B.; Razavi, R.: Triethanolamine lactate-supported nanomagnetic cellulose: a green and efficient catalyst for the synthesis of pyrazolo[3,4-b]quinolines and theoretical study. Res. Chem. Intermed. 46, 2749–2765 (2020). https://doi.org/10.1007/s11164-020-04117-8

    Article  Google Scholar 

  31. Ahmad, M.; Usman, A.R.A.; Rafique, M.I.; Al-Wabel, M.I.: Engineered biochar composites with zeolite, silica, and nano-zerovalent iron for the efficient scavenging of chlortetracycline from aqueous solutions. Environ. Sci. Pollut. Res. 26, 15136–15152 (2019). https://doi.org/10.1007/s11356-019-04850-7

    Article  Google Scholar 

  32. Lin, Y.; Munroe, P.; Joseph, S.; Kimber, S.; Van Zwieten, L.: Nanoscale organo-mineral reactions of biochars in ferrosol: an investigation using microscopy. Plant Soil. 357, 369–380 (2012). https://doi.org/10.1007/s11104-012-1169-8

    Article  Google Scholar 

  33. Mohan, D.; Sarswat, A.; Ok, Y.S.; Pittman, C.U.: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour. Technol. 160, 191–202 (2014). https://doi.org/10.1016/j.biortech.2014.01.120

    Article  Google Scholar 

  34. Zhang, M.; Li, J.; Wang, Y.: Impact of biochar-supported zerovalent iron nanocomposite on the anaerobic digestion of sewage sludge. Environ. Sci. Pollut. Res. 26, 10292–10305 (2019). https://doi.org/10.1007/s11356-019-04479-6

    Article  Google Scholar 

  35. Yusuf, A.A.; Inambao, F.L.: Characterization of Ugandan biomass wastes as the potential candidates towards bioenergy production. Renew. Sustain. Energy Rev. 117, 109477 (2020)

    Article  Google Scholar 

  36. Ahmad, M.; Ahmad, M.; Usman, A.R.A.; Al-Faraj, A.S.; Abduljabbar, A.S.; Al-Wabel, M.I.: Biochar composites with nano zerovalent iron and eggshell powder for nitrate removal from aqueous solution with coexisting chloride ions. Environ. Sci. Pollut. Res. 25, 25757–25771 (2018). https://doi.org/10.1007/s11356-017-0125-9

    Article  Google Scholar 

  37. Shi, L.; Zhang, X.; Chen, Z.: Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Res. 45, 886–892 (2011). https://doi.org/10.1016/j.watres.2010.09.025

    Article  Google Scholar 

  38. Sun, Y.-P.; Li, X.; Cao, J.; Zhang, W.; Wang, H.P.: Characterization of zero-valent iron nanoparticles. Adv. Colloid Interface Sci. 120, 47–56 (2006). https://doi.org/10.1016/j.cis.2006.03.001

    Article  Google Scholar 

  39. Qian, L.; Zhang, W.; Yan, J.; Han, L.; Chen, Y.; Ouyang, D.; Chen, M.: Nanoscale zero-valent iron supported by biochars produced at different temperatures: synthesis mechanism and effect on Cr(VI) removal. Environ. Pollut. 223, 153–160 (2017). https://doi.org/10.1016/j.envpol.2016.12.077

    Article  Google Scholar 

  40. Singh, R.; Gautam, N.; Mishra, A.; Gupta, R.: Heavy metals and living systems: an overview. Indian J. Pharmacol. 43, 246–253 (2011). https://doi.org/10.4103/0253-7613.81505

    Article  Google Scholar 

  41. Chen, Y.-F.; Kao, C.-L.; Yang, J.-F.; Huang, P.-C.; Hsu, C.-Y.; Kuei, C.-H.: A Simple extraction method for determination of high molecular weight polycyclic aromatic hydrocarbons in sediments by gas chromatography–mass spectrometry. J. Chin. Chem. Soc. 62, 766–771 (2015). https://doi.org/10.1002/jccs.201500184

    Article  Google Scholar 

  42. Zhou, Y.; Liu, X.; Xiang, Y.; Wang, P.; Zhang, J.; Zhang, F.; Wei, J.; Luo, L.; Lei, M.; Tang, L.: Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling. Bioresour. Technol. 245, 266–273 (2017). https://doi.org/10.1016/j.biortech.2017.08.178

    Article  Google Scholar 

  43. Delgado, N.; Capparelli, A.; Navarro, A.; Marino, D.: Pharmaceutical emerging pollutants removal from water using powdered activated carbon: study of kinetics and adsorption equilibrium. J. Environ. Manag. 236, 301–308 (2019). https://doi.org/10.1016/j.jenvman.2019.01.116

    Article  Google Scholar 

  44. Mohapatra, R.K.; Parhi, P.K.; Pandey, S.; Bindhani, B.K.; Thatoi, H.; Panda, C.R.: Active and passive biosorption of Pb(II)using live and dead biomass of marine bacterium Bacillus xiamenensis PbRPSD202: kinetics and isotherm studies. J. Environ. Manag. 247, 121–134 (2019). https://doi.org/10.1016/j.jenvman.2019.06.073

    Article  Google Scholar 

  45. Lal Homagai, P.; Ghimire, K.N.; Inoue, K.: Adsorption behavior of heavy metals onto chemically modified sugarcane bagasse. Bioresour. Technol. 101, 2067–2069 (2010). https://doi.org/10.1016/j.biortech.2009.11.073

    Article  Google Scholar 

  46. Shen, W.; Chen, S.; Shi, S.; Li, X.; Zhang, X.; Hu, W.; Wang, H.: Adsorption of Cu(II) and Pb(II) onto diethylenetriamine-bacterial cellulose. Carbohydr. Polym. 75, 110–114 (2009). https://doi.org/10.1016/j.carbpol.2008.07.006

    Article  Google Scholar 

  47. Zhu, S.; Ho, S.-H.; Huang, X.; Wang, D.; Yang, F.; Wang, L.; Wang, C.; Cao, X.; Ma, F.: Magnetic nanoscale zerovalent iron assisted biochar: interfacial chemical behaviors and heavy metals remediation performance. ACS Sustain. Chem. Eng. 5, 9673–9682 (2017). https://doi.org/10.1021/acssuschemeng.7b00542

    Article  Google Scholar 

  48. Naowanat, N.; Thouchprasitchai, N.; Pongstabodee, S.: Adsorption of emulsified oil from metalworking fluid on activated bleaching earth-chitosan-SDS composites: optimization, kinetics, isotherms. J. Environ. Manag. 169, 103–115 (2016). https://doi.org/10.1016/j.jenvman.2015.12.024

    Article  Google Scholar 

  49. Wang, H.; Gao, B.; Wang, S.; Fang, J.; Xue, Y.; Yang, K.: Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood. Bioresour. Technol. 197, 356–362 (2015). https://doi.org/10.1016/j.biortech.2015.08.132

    Article  Google Scholar 

  50. Inyang, M.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.R.; Pullammanappallil, P.; Cao, X.: Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour. Technol. 110, 50–56 (2012). https://doi.org/10.1016/j.biortech.2012.01.072

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Higher Education Commission, SRGP Project 1847, for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abid Hussain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, A., Yousaf, U., Rahman Ch, U. et al. Synthesis and Application of Modified Orchard Waste Biochar for Efficient Scavenging of Copper from Aqueous Solutions. Arab J Sci Eng 47, 333–345 (2022). https://doi.org/10.1007/s13369-021-05362-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05362-8

Keyword

Navigation