Skip to main content
Log in

Structure, optical and electronic characteristics of iron-doped cadmium sulfide under nonambient atmosphere

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Iron-doped nano CdS was prepared in air and underflow of nitrogen applying the thermolysis technique. The impact of air and nitrogen atmosphere on the crystallinity and the different structure parameters of the obtained samples was investigated using X-ray diffraction measurements and applying Rietveld method. Analysis revealed the presence of two phases for CdS; hexagonal wurtzite and cubic zincblende with phase percentages greatly affected with preparation conditions; sample obtained under N2 is almost pure hexagonal (97%). The particle morphology was investigated by FE-SEM, and the associated EDS spectra manifested elements percentages in accordance with those intended for preparation. The optical bandgap was greatly affected; compared with samples formed in air, it reduced upon doping with Fe as well as upon preparation under N2, it decreased from 2.58 eV for pristine CdS to 1.99 eV for Fe-doped CdS under N2. The photoluminescence (PL) intensity was also affected by the condition of preparation and iron doping. Pure and Fe-doped CdS samples emitted violet and blue colors. Density function theory (DFT) calculations were performed to explain the reason for the reduction of the optical bandgap upon doping CdS with Fe. The comparison between different electronic characteristics of pure and Fe-doped CdS samples was explored also by DFT calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Pareek, R. Dom, P.H. Borse, Int. J. Hydrog. Energy 38, 36 (2013)

    Google Scholar 

  2. M.S. Ilango, S.K. Ramasesha, Pramana. J. Phys. 90, 53 (2018)

    ADS  Google Scholar 

  3. S.K. Shinde, H.D. Dhaygude, P.P. Chikode, V.J. Fulari, J. Mater. Sci. Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-6427-3

    Article  Google Scholar 

  4. L.L. Yan, P. Yang, H.X. Cai, L. Chen, Appl. Phys. A 124, 827 (2018)

    ADS  Google Scholar 

  5. K. Veerathangam, M.S. Pandian, P. Ramasamy, Mater. Sci. Semicond. Process. 108, 104869 (2020)

    Google Scholar 

  6. Z.K. Heiba, M.B. Mohamed, N.G. Imam, J. Alloy. Compd. 618, 280 (2015)

    Google Scholar 

  7. A.H. Mueller, M.A. Petruska, M. Achermann, D. Werder, E. Akhadov, D. Koleske, M. Hoffbauer, V.I. Klimov, Nano Lett. 5(6), 1039 (2005)

    ADS  Google Scholar 

  8. R.L. Morales, O.Z. Angel, G.T. Delgado, Appl. Surf. Sci. 175, 562 (2001)

    ADS  Google Scholar 

  9. F.T. Chari, M. Fadavieslam, Opt. Quant. Electron. 51, 377 (2019)

    Google Scholar 

  10. N. Maticiuc, J. Hiie, V. Mikli, T. Potlog, V. Valdna, Mater. Sci. Semicond. Process. 26, 169 (2014)

    Google Scholar 

  11. M. Shaban, M. Mustafa, A.M. El Sayed, Mater. Sci. Semicond. Process. 56, 329 (2016)

    Google Scholar 

  12. N. Patel, M. Deshpande, S. Chaki, H. Keharia, J. Mater. Sci.: Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-6865-y

    Article  Google Scholar 

  13. S. Sebastian, I. Kulandaisamy, S. Valanarasu, N. Soundaram, K. Paulraj, D. Vikraman, H.-S. Kim, J. Mater. Sci.: Mater. Electron. 30, 8024 (2019)

    Google Scholar 

  14. M. Ikram, E. Umar, A. Raza, A. Haider, S. Naz, A. Ul-Hamid, J. Haider, I. Shahzadi, J. Hassan, S. Ali, RSC Adv. 10, 24215 (2020)

    ADS  Google Scholar 

  15. M. Ikram, M.I. Khan, A. Raza, M. Imran, A. Ul-Hamid, S. Ali, Physica E 124, 114246 (2020)

    Google Scholar 

  16. M. Ikram, S. Ali, M. Aqeel, A. Ul-Hamid, M. Imrand, J. Haiderf, A. Haider, A. Shahbaz, S. Ali, J. Alloy. Compd. 837, 155588 (2020)

    Google Scholar 

  17. S. Horoz, O. Sahin, J. Mater. Sci.: Mater. Electron. 28, 9559 (2017)

    Google Scholar 

  18. K. Pitchaimani, L. Amalraj, S. Muthukumaran, Physica E 78, 56 (2016)

    ADS  Google Scholar 

  19. A. Javed, Qurat-ul-Ain, M. Bashir, J. Alloys Compd. 759, 14 (2018) 

  20. M. El-Hagary, E.R. Shaaban, M. Emam-Ismail, S. Althoyaib, J. Alloys Compd. 520, 140 (2012)

    Google Scholar 

  21. M. Junaid, M. Imran, M. Ikram, M. Naz, M. Aqeel, H. Afzal, H. Majeed, S. Ali, Appl. Nanosci. 9, 1593 (2019)

    ADS  Google Scholar 

  22. L. Lutterotti, Nucl. Inst. Methods Phys. Res. B. 268(3), 334–340 (2010)

    ADS  Google Scholar 

  23. J. Rodríguez-Carvajal, Phys. B (Amsterdam, Neth.) 192, 55 (1993) .

  24. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett 77, 3865 (1996)

    ADS  Google Scholar 

  25. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    ADS  Google Scholar 

  26. Z.K. Heiba, M.B. Mohamed, N.M. Farag, A.M. El-naggar, A.A. Albassam, J. Mater. Sci.: Mater. Electron. 31(15), 12696 (2020)

    Google Scholar 

  27. R.D. Shannon, Acta Crystallogr. A 32, 75 (1976)

    Google Scholar 

  28. T.P. Martin, H. Schaber, Spectrochem. Acta. A. 38, 655 (1982)

    ADS  Google Scholar 

  29. M.N. Kalasad, M.K. Rabinal, B.G. Mulimani, G.S. Avadhani, Semicond. Sci. Technol. 23(045009), 1 (2008)

    Google Scholar 

  30. G.T. Rao, R.J. Stella, B. Babu, K. Ravindranadh, Ch.V. Reddy, J. Shim, R.V.S.S.N. Ravikumar, Mater. Eng. B Sci. (2015). https://doi.org/10.1016/j.mseb.2015.06.012

    Article  Google Scholar 

  31. R. Devi, P. Purkayastha, P.K. Kalita, B.K. Sarma, Bull. Mater. Sci. 30(2), 123 (2007)

    Google Scholar 

  32. R. Seoudi, A.B. El- Bailly, W. Eisa, A.A. Shabaka, A.A. Soliman, R.K. Abd El Hamid, R.A. Ramadan, J. Appl. Sci. Res. 8(2), 658 (2010)

    Google Scholar 

  33. J. Tauc, Mater. Res. Bull. 5, 721 (1970)

  34. Z.K. Heiba, M.B. Mohamed, A.M. Wahba, N.G. Imam, J. Elec. Mater. 47(1), 711 (2018)

    ADS  Google Scholar 

  35. N.G. Imam, M.B. Mohamed, Superlattices Microstruct. 73, 203 (2014)

    ADS  Google Scholar 

  36. K. Raja, P.S. Ramesh, D. Geetha, Spectrochim Acta A Mol Biomol Spectrosc 131, 183–188 (2014)

    ADS  Google Scholar 

  37. M.M. Ovhal, A. Santhosh Kumar, P. Khullar, A.C. Manjeet Kumar, Abhyankar, , Mater. Chem. Phys. 195, 58–66 (2017)

    Google Scholar 

  38. N. Eryong, L. Donglai, Z. Yunsen, B. Xue, Y. Liang, J. Yong, J. Zhifeng, S. Xiaosong, Appl. Surf. Sci. 257, 8762–8766 (2011)

    ADS  Google Scholar 

  39. K. Kaur, G.S. Lotey, N.K. Verma, Mater Sci: Mater Electron. 25, 2605–2610 (2014)

    Google Scholar 

  40. I. López, I. Gómez, Phys. B 453, 81 (2014)

    ADS  Google Scholar 

  41. T.-L. Zhang, Y.-S. Xia, X.-L. Diao, C.-Q. Zhu, J. Nanopart Res. 10, 59 (2008)

    ADS  Google Scholar 

  42. S.K. Mishra, R.K. Srivastava, S.G. Prakash, R.S. Yadav, A.C. Panday, Electron Mater Lett. 7(1), 31 (2011)

    ADS  Google Scholar 

  43. M.B. Mohamed, M.H. Abdel-Kader, A.A. Alhazime, J.Q.M. Almarashi, J. Mol. Struct. 1155, 666 (2018)

    ADS  Google Scholar 

  44. K. Kaur, N.K. Verma, J. Supercond. Nov. Magn. 28, 3317 (2015)

    Google Scholar 

  45. V. Krishnakumar, R. Ranjith, J. Jayaprakash, S. Boobas, J. Venkatesan, J. Mater. Sci: Mater. Electron 28, 13990 (2017)

    Google Scholar 

  46. Y. Lie, W.K. Chim, H.P. Sun, G. Wilde, Appl. Phys. Lett. 86, 103106 (2005)

    ADS  Google Scholar 

  47. X.-Y. Jiang, C.-L. Yang, Y.-X. Han, M.-S. Wang, X.-G. Ma, Mater. Chem. Phys. 183, 349 (2016)

    Google Scholar 

  48. Y.X. Han, C.L. Yang, Y.T. Sun, M.S. Wang, X.G. Ma, J. Alloys. Compd. 585, 503 (2014)

    Google Scholar 

  49. J. Heyd, J.E. Peralta, G.E. Scuseria, J. Chem. Phys. 123, 174101 (2005)

    ADS  Google Scholar 

  50. N.A. Noor, W. Tahir, Fatima Aslam, A. Shaukat, Physica B 407, 943 (2012) 

  51. E. Deligoz, K. Colakoglu, Y. Ciftci, Phys. B 373, 124 (2006)

    ADS  Google Scholar 

  52. Z.K. Heiba, M.B. Mohamed, A.M. Wahba, J. Mater. Sci.: Mater. Electron 31, 14645 (2020)

    Google Scholar 

  53. B. Bhattacharya, N.B. Singh, R. Mondal, U. Sarkar, Phys. Chem. Chem. Phys. 17, 19325 (2015)

    Google Scholar 

  54. D. Saikia, J.P. Borah, Appl. Phys. A 124(3), 240 (2018)

    ADS  Google Scholar 

  55. A. Bouhemadou, R. Khenata, Comput. Mater. Sci. 39, 803 (2007)

    Google Scholar 

  56. C. Li, B. Wang, R. Wang, H. Wang, X. Lu, Comput. Mater. Sci. 42(4), 614 (2008)

    Google Scholar 

Download references

Acknowledgement

The authors thank the support of Taif University Researchers Supporting Project number (TURSP-2020/12), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamed Bakr Mohamed or Ali Badawi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heiba, Z.K., Mohamed, M.B. & Badawi, A. Structure, optical and electronic characteristics of iron-doped cadmium sulfide under nonambient atmosphere. Appl. Phys. A 127, 166 (2021). https://doi.org/10.1007/s00339-021-04293-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04293-3

Keywords

Navigation