Skip to main content
Log in

Optimal Control for a Dynamic Thermo-Electro-Viscoelastic Contact Problem with Frictional Heating

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

This paper focuses on optimal control of a coupled system modeling a dynamic frictional thermo-electroviscoelastic contact problem between a piezoelectric body and an electrically and thermally conductive foundation. The material’s behavior is described by a linear thermo-viscoelectroelastic constitutive law and the contact is modeled with a compliance normal condition coupled with Coulomb’s friction law, an electric condition in the Tresca’s form and thermal condition taking into account both heat transfer and frictional heating process. The weak formulation of the problem consists of a system of two variational inequalities and nonlinear variational equations. We provide existence and uniqueness results of a weak solution to the model and, under some additional assumptions, the continuous dependence of a solution on the problem’s data. Finally, for a class of optimal control problems and inverse problems, we prove the existence of optimal solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amassad, A., Kuttler, K.L., Rochdi, M., Shillor, M.: Quasi-static thermoviscoelastic contact problem with slip dependent friction coefficient. Math. Comput. Model. 36(7–8), 839–854 (2002)

    Article  MathSciNet  Google Scholar 

  2. Baiz, O., Benaissa, H., El Moutawakil, D., Fakhar, R.: Variational and numerical analysis of a quasistatic thermo-electro-visco-elastic frictional contact problem. Z. Angew. Math. Mech. 99(3), 1–20 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Boukrouche, M., Tarzia, D.A.: Existence, uniqueness and convergence of optimal control problems associated with parabolic variational inequalities of the second kind. Nonlinear Anal., Real World Appl. 12, 2211–2224 (2011)

    Article  MathSciNet  Google Scholar 

  4. Barboteu, M., Bartosz, K., Danan, D.: Analysis of a dynamic contact problem with nonmonotone friction and nonclamped boundary conditions. Appl. Numer. Math. 126, 53–77 (2018)

    Article  MathSciNet  Google Scholar 

  5. Barbu, V.: Optimal Control of Variational Inequalities. Research Notes in Mathematics, vol. 100. Pitman, Boston (1984)

    MATH  Google Scholar 

  6. Bartosz, K., Danan, D., Szafraniec, P.: Numerical analysis of a dynamic bilateral thermoviscoelastic contact problem with nonmonotone friction law. Comput. Math. Appl. 73, 727–746 (2017)

    Article  MathSciNet  Google Scholar 

  7. Brézis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)

    MATH  Google Scholar 

  8. Campo, M., Fernandez, J.R., Han, W.: A dynamic viscoelastic contact problem with normal compliance and damage. Finite Elem. Anal. Des. 42, 1–24 (2005)

    Article  MathSciNet  Google Scholar 

  9. Chen, T., Huang, N.J., Xiao, Y.B.: Variational and numerical analysis of a dynamic viscoelastic contact problem with friction and wear. Optimization (2020). https://doi.org/10.1080/02331934.2020.1712394

    Article  MathSciNet  MATH  Google Scholar 

  10. Denkowski, Z., Migorski, S., Ochal, A.: A class of optimal control problems for piezoelectric frictional contact models. Nonlinear Anal., Real World Appl. 12, 1883–1895 (2011)

    Article  MathSciNet  Google Scholar 

  11. Freidman, A.: Optimal control for variational inequalities. SIAM J. Control Optim. 24, 439–451 (1986)

    Article  MathSciNet  Google Scholar 

  12. Fremond, M.: Non-smooth Thermomechanics. Springer, Berlin (2002)

    Book  Google Scholar 

  13. Guo, F.M., et al.: Study on low voltage actuated MEMS rf capacitive switches. Sens. Actuators A, Phys. 108, 128–133 (2003)

    Article  Google Scholar 

  14. Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelastictity and Viscoplasticity. Studies in Advanced Mathematics. Am. Math. Soc./International Press, Providence (2002)

    Book  Google Scholar 

  15. Hüeber, S., Wohlmuth, B.I.: Thermo-mechanical contact problems on non-matching meshes. Comput. Methods Appl. Mech. Eng. 198(15–16), 1338–1350 (2009)

    Article  Google Scholar 

  16. Kulig, A.: Hyperbolic hemivariational inequalities for dynamic viscoelastic contact problems. J. Elast. 110, 1–31 (2013)

    Article  MathSciNet  Google Scholar 

  17. Lamhamdi, M., et al.: Voltage and temperature effect on dielectric charging for RF-MEMS capacitive switches reliability investigation. Microelectron. Reliab. 48(8–9), 1248–1252 (2008)

    Article  Google Scholar 

  18. Matei, A., Micu, S.: Boundary optimal control for a frictional contact problem with normal compliance. Appl. Math. Optim. 78, 379–401 (2018)

    Article  MathSciNet  Google Scholar 

  19. Matei, A., Sofonea, M.: A mixed variational formulation for a piezoelectric frictional contact problem. IMA J. Appl. Math. 82(2), 334–354 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Mignot, F., Puel, J.P.: Optimal control in some variational inequalities. SIAM J. Control Optim. 22, 466–476 (1984)

    Article  MathSciNet  Google Scholar 

  21. Migórski, S.: Dynamic hemivariational inequality modeling viscoelastic contact problem with normal damped response and friction. Appl. Anal. 84, 669–699 (2005)

    Article  MathSciNet  Google Scholar 

  22. Migórski, S., Ochal, A., Sofonea, M.: Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems. Advances in Mechanics and Mathematics, vol. 26. Springer, New York (2013)

    MATH  Google Scholar 

  23. Migórski, S., Szafraniec, P.: A class of dynamic frictional contact problems governed by a system of hemivariational inequalities in thermoviscoelasticity. Nonlinear Anal., Real World Appl. 15, 158–171 (2014)

    Article  MathSciNet  Google Scholar 

  24. Peng, F.: Actuator placement optimization and adaptive vibration control of plate smart structures. J. Intell. Mater. Syst. Struct. 16, 263–271 (2005)

    Article  Google Scholar 

  25. Peng, Z., Kunisch, K.: Optimal control of elliptic variational-hemivriational inequalities. Int. J. Optim.: Theory Methods Appl. 178, 1–25 (2018)

    MATH  Google Scholar 

  26. Schauwecker, B., et al.: Investigations of rf shunt airbridge switches among different environmental conditions. Sens. Actuators A, Phys. 114, 49–58 (2004)

    Article  Google Scholar 

  27. Rochdi, M., Shillor, M.: Existence and uniqueness for a quasistatic frictional bilateral contact problem in thermoviscoelasticity. Q. Appl. Math. 58(3), 543–560 (2000)

    Article  MathSciNet  Google Scholar 

  28. Shillor, M., Sofonea, M., Telega, J.J.: Models and Analysis of Quasistatic Contact. Lecture Notes in Physics, vol. 655. Springer, Berlin (2004)

    Book  Google Scholar 

  29. Sofonea, M.: Convergence results and optimal control for a class of hemivariational inequalities. SIAM J. Math. Anal. 50, 4066–4086 (2018)

    Article  MathSciNet  Google Scholar 

  30. Sofonea, M., Patrulescu, F.: A viscoelastic contact problem with adhesion and surface memory effects. Math. Model. Anal. 19(5), 607–626 (2014)

    Article  MathSciNet  Google Scholar 

  31. Touzaline, A.: Optimal control of a frictional contact problem. Acta Math. Appl. Sin. Engl. Ser. 31, 991–1000 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hicham Benaissa.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baiz, O., Benaissa, H. Optimal Control for a Dynamic Thermo-Electro-Viscoelastic Contact Problem with Frictional Heating. Acta Appl Math 171, 22 (2021). https://doi.org/10.1007/s10440-021-00390-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-021-00390-w

Keywords

Mathematics Subject Classification (2010)

Navigation