Skip to main content
Log in

Quality Factor of Inhomogeneous Plane Waves

  • PHYSICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

We first compare two apparently dissimilar expressions for the quality factor Q of inhomogeneous plane waves in isotropic viscoelastic media, where Q is defined as the result of an energy-balance relation. In this case, it is the ratio of twice the strain energy to the dissipated energy. Both expressions give the same Q for P-waves and Q for S-waves is independent of the inhomogeneity angle γ (isotropic media). Then, we consider the more general balance equation, which holds for anisotropic viscoelastic media, where anomalous behaviors are observed when γ exceeds some critical value (forbidden directions of propagation). This problem has already been solved analytically for SH-waves. Here, we consider the qPqS case, which requires a numerical solution of the dispersion equation to obtain the wavenumber and attenuation factor, i.e., the real and imaginary parts of the wave vector, respectively. The forbidden directions appear when the phase velocity approaches a zero value. Generally, the phase velocity of homogeneous waves (γ = 0) exceeds that of inhomogeneous waves, while the latter show stronger attenuation (lower quality factor). In the vicinity of the forbidden directions, the opposite behavior may occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. B. D. Zaĭtsev and I. E. Kuznetsova, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 50, 1765 (2003).

    Article  Google Scholar 

  2. B. D. Zaĭtsev, A. A. Teplykh, and I. E. Kuznetsova, Dokl. Phys. 52, 10 (2007).

    Article  ADS  Google Scholar 

  3. I. Djeran-Maigre and S. V. Kuznetsov, Acoust. Phys. 60, 200 (2014).

    Article  ADS  Google Scholar 

  4. S. Moradi and K. Innanen, J. Geophys. Eng. 15, 1811 (2018).

    Article  Google Scholar 

  5. I. B. Morozov, W. Deng, and D. Cao, Geophys. J. Int. 220, 1762 (2020).

    Article  ADS  Google Scholar 

  6. X. Liu, F. Youhuab, and C. Dongmei, Acta Phys. Pol. 137, 276 (2020).

    Article  ADS  Google Scholar 

  7. P. W. Buchen, Geophys. J. R. Astron. Soc. 23, 531 (1971).

    Article  ADS  Google Scholar 

  8. J. M. Carcione, Wave Fields in Real Media, Vol. 38: Theory and Numerical Simulation of Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media, 3rd ed. (Elsevier, 2014).

    Google Scholar 

  9. J. M. Carcione and F. Cavallini, Wave Motion 18, 11 (1993).

    Article  MathSciNet  Google Scholar 

  10. J. M. Carcione and F. Cavallini, Geophysics 60, 522 (1995).

    Article  ADS  Google Scholar 

  11. J. M. Carcione and F. Cavallini, IEEE Trans. Antennas Propag. 45, 133 (1997).

    Article  ADS  Google Scholar 

  12. V. Červeny and I. Pšenčík, Geophys. J. Int. 161, 197 (2005).

    Article  ADS  Google Scholar 

  13. J. M. Carcione and B. Ursin, Geophysics 81, T107 (2016).

    Article  ADS  Google Scholar 

  14. J. M. Carcione, Proc. R. Soc. London. Ser. A 457, 331 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  15. V. Červeny and I. Pšenčík, Geophysics 76, WA51 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Ba.

Appendices

APPENDIX A

1.1 Quality Factor for qP–qS Waves in Anisotropic Viscoelastic Media

We report an expression of the quality factor for anisotropic and viscoelastic media based on the energy balance obtained by Carcione and Cavallini [9]. We assume wave propagation in the (x, z)-symmetry plane of an orthorhombic medium, with the positive z-axis pointing downwards. The medium complex and frequency-dependent stiffness components are pIJ, I, J = 1, …, 6 and the mass density is ρ. We consider the general plane-wave solution (1), where the wave vector is k = (k1, k3) = ω(s1, s3), where si are slowness components. The k3-component in terms of the horizontal wavenumber k1 is

$${{k}_{3}} = \pm \frac{\omega }{{\sqrt 2 }}\sqrt {{{K}_{1}} \mp pv\sqrt {K_{1}^{2} - 4{{K}_{2}}{{K}_{3}}} } ,$$
(A.1)

where

$${{K}_{1}} = \rho \left( {\frac{1}{{{{p}_{{55}}}}} + \frac{1}{{{{p}_{{33}}}}}} \right) + \frac{1}{{{{p}_{{55}}}}}\left[ {\frac{{{{p}_{{13}}}}}{{{{p}_{{33}}}}}\left( {{{p}_{{13}}} + 2{{p}_{{55}}}} \right) - {{p}_{{11}}}} \right]s_{1}^{2},$$
$${{K}_{2}} = \frac{1}{{{{p}_{{33}}}}}\left( {{{p}_{{11}}}s_{1}^{2} - \rho } \right),\,\,\,\,{{K}_{3}} = s_{1}^{2} - \frac{\rho }{{{{p}_{{55}}}}}.$$

The signs in k3 correspond to (+, −): downward propagating qP wave; (+, +): downward propagating qS wave; (−, −): upward propagating qP wave; and (−, +): upward propagating qS wave. The plane-wave eigenvectors (polarizations) are

$${\mathbf{V}} = {{V}_{0}}\left( \begin{gathered} \beta \hfill \\ \xi \hfill \\ \end{gathered} \right),$$
(A.2)

where V0 is the plane-wave amplitude and

$$\beta = pv\sqrt {\frac{{{{p}_{{55}}}k_{1}^{2} + {{p}_{{33}}}k_{3}^{2} - \rho {{\omega }^{2}}}}{{{{p}_{{11}}}k_{1}^{2} + {{p}_{{33}}}k_{3}^{2} + {{p}_{{55}}}\left( {k_{1}^{2} + k_{3}^{2}} \right) - 2\rho {{\omega }^{2}}}}} ,$$
(A.3)

and

$$\xi = \pm pv\sqrt {\frac{{{{p}_{{11}}}k_{1}^{2} + {{p}_{{55}}}k_{3}^{2} - \rho {{\omega }^{2}}}}{{{{p}_{{11}}}k_{1}^{2} + {{p}_{{33}}}k_{3}^{2} + {{p}_{{55}}}\left( {k_{1}^{2} + k_{3}^{2}} \right) - 2\rho {{\omega }^{2}}}}} .$$
(A.4)

In general, the + and − signs correspond to the qP- and qS-waves, respectively. However one must choose the signs such that ξ varies smoothly with the propagation angle.

Then, the quality factor for anisotropic media is given by equation (11), where

$$\begin{gathered} \omega {\kern 1pt} W = {{p}_{{55}}}\left( {\xi {{k}_{1}} + \beta {{k}_{3}}} \right),\,\,\,\,\omega {\kern 1pt} X = \beta {{p}_{{11}}}{{k}_{1}} + \xi {{p}_{{13}}}{{k}_{3}}, \\ \omega Z = \beta {{p}_{{13}}}{{k}_{1}} + \xi {{p}_{{33}}}{{k}_{3}}. \\ \end{gathered} $$
(A.5)

In the isotropic case the above components k1 and k3 are equivalent to equation (12). In the anisotropic case, a numerical solution is required to obtain k1 and k3, i.e., the calculation of κ and α, but in this case, equation (A.1) is the analytical solution for homogeneous waves.

APPENDIX B

1.1 Quality Factor of S-waves for Inhomogeneous Waves

For S-waves (isotropic media),

$$\frac{{\rho {{\omega }^{2}}}}{\mu } = \frac{{{{k}^{2}}}}{{{{\omega }^{2}}}} = \frac{{\operatorname{Re} \left( {{{k}^{2}}} \right) + i\operatorname{Im} \left( {{{k}^{2}}} \right)}}{{{{\omega }^{2}}}}.$$
(B.1)

Since µ = µR + iµI and taking real and imaginary parts, we obtain

$$\begin{gathered} \rho {{\omega }^{2}} = \mu {}_{R}\operatorname{Re} \left( {{{k}^{2}}} \right) - {{\mu }_{I}}\operatorname{Im} \left( {{{k}^{2}}} \right), \\ 0 = \mu {}_{R}\operatorname{Im} \left( {{{k}^{2}}} \right) - {{\mu }_{I}}\operatorname{Re} \left( {{{k}^{2}}} \right). \\ \end{gathered} $$
(B.2)

Substituting equations (B.2) into equation (10), we obtain

$$Q = \frac{{2\left\langle V \right\rangle }}{{\left\langle D \right\rangle }} = - \frac{{\operatorname{Re} \left( {{{k}^{2}}} \right)}}{{\operatorname{Im} \left( {{{k}^{2}}} \right)}}.$$
(B.3)

which is the S-wave Q factor of homogeneous plane waves, independent of the inhomogeneity angle γ (see Eqs. (3.32) in Carcione [8]). This result is also valid for SH-waves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

José M. Carcione, Liu, X., Greenhalgh, S. et al. Quality Factor of Inhomogeneous Plane Waves. Acoust. Phys. 66, 598–603 (2020). https://doi.org/10.1134/S1063771020060111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771020060111

Keywords:

Navigation