Skip to main content
Log in

Propagation of Leaky Interface Waves at a Solid Boundary under Pulse Excitation

  • PHYSICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Leaky interface wave generated by pulse excitation is investigated. According to different physical significance of wave solutions, appropriate solutions are selected to calculate propagation of leaky interface wave under pulse excitation. The propagation characteristics of leaky interface wave are explored through attenuation characteristic, dispersion relation and wave structure. To verify the theoretical predications, a Finite Element Method (FEM) simulation is carried out. Attenuation characteristic and wave structure are extracted from simulation results and compared with theoretical results. Additionally, an experimental verification is set up. In this experiment, the existence and excitability of leaky interface wave are verified by measuring the wave velocity and waveform analysis. Through FEM simulation and experiment, some properties of prediction from theoretical derivation are verified. The propagation characteristics of leaky interface wave provide some references for its application in nondestructive testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. R. Stoneley, Proc. R. Soc. London 106 (738), 416 (1924).

    ADS  Google Scholar 

  2. J. G. Scholte, Geophys. J. Int. 5 (5), 120 (1947).

    Article  ADS  MathSciNet  Google Scholar 

  3. W. L. Roever, T. F. Vining, and E. Strick, Philos. Trans. R. Soc. A 251, 455 (1959).

    ADS  Google Scholar 

  4. R. A. Phinney, Bull. Seismol. Soc. Am. 51 (4), 527 (1961).

    MathSciNet  Google Scholar 

  5. Yu. I. Bobrovnitskii, Acoust. Phys. 57 (5), 595 (2011).

    Article  ADS  Google Scholar 

  6. A. A. Gubaidulin and O. Yu. Boldyreva, Acoust. Phys. 52 (2), 163 (2006).

    Article  ADS  Google Scholar 

  7. F. Gilbert and S. J. Laster, Bull. Seismol. Soc. Am. 52 (2), 299 (1962).

    Google Scholar 

  8. B. Pilant, Bull. Seismol. Soc. Am. 62 (1), 285 (1972).

    Google Scholar 

  9. A. I. Kokshaiskii, A. I. Korobov, and N. V. Shirgina, Acoust. Phys. 63 (2), 154 (2017).

    Article  ADS  Google Scholar 

  10. N. S. Grigorieva, M. S. Kupriyanov, D. A. Mikhailova, and D. B. Ostrovskiy, Acoust. Phys. 62 (1), 8 (2016).

    Article  ADS  Google Scholar 

  11. D. A. Lee and D. M. Corbly, IEEE Trans. Sonics Ultrason. 24 (3), 206 (1977).

    Article  Google Scholar 

  12. J. H. Bostron, J. L. Rose, and C. Moose, J. Acoust. Soc. Am. 134 (6), 4351 (2013).

    Article  ADS  Google Scholar 

  13. B. Li, M. H. Li, and T. Lu, J. Acoust. Soc. Am. 143 (2), 2541 (2018).

    Article  ADS  Google Scholar 

  14. C. Mattei, X. Jia, and G. Quentin, J. Acoust. Soc. Am. 102 (3), 1532 (1997).

    Article  ADS  Google Scholar 

  15. M. D. Gardner, J. L. Rose, and K. L. Koudela, J. Acoust. Soc. Am. 133 (5), 030105 (2013).

    Article  Google Scholar 

  16. M. F. Wee, M. Addouche, and K. S. Siow, AIP Adv. 6 (12), 121703 (2016).

    Article  ADS  Google Scholar 

  17. G. H. Du, Z. M. Zhu, and X. F. Gong, Fundamentals of Acoustics, 3rd ed. (Nanjing Univ. Press, Nanjing, 2017), Chapter 4, p. 142.

    Google Scholar 

  18. L. P. Solie and B. A. Auld, J. Acoust. Soc. Am. 54 (1), 50 (1973).

    Article  ADS  Google Scholar 

  19. J. L. Rose, Ultrasonic Guided Waves in Solid Media, 1st ed. (Cambridge Univ. Press, Cambridge, 1999), Chapter 9, p. 108; Chapter 12, p. 134.

    Google Scholar 

  20. L. M. Brekhovskikh and O. A. Godin, Acoustics of Layered Media I: Plane and Quasi-Plane Waves, 1st ed. (Springer, Berlin, 1990), Chapter 4, p. 105.

    Book  Google Scholar 

  21. Z. Zhuang, X. You, J. Liao, S. Cen, X. Shen, and M. Liang, Finite Element Analysis and Application Based on ABAQUS (Tsinghua Univ. Press, Beijing, 2009), p. 189.

    Google Scholar 

  22. N. Ryden and M. J. Lowe, J. Acoust. Soc. Am. 116 (5), 2902 (2004).

    Article  ADS  Google Scholar 

  23. S. Sikdar and S. Banerjee, Compos. Struct. 152, 568 (2016).

    Article  Google Scholar 

  24. For a better understanding of the insights drawn in the paper, experimental material parameters and experimental results are in supplementary material. https:// pan.baidu.com/s/1Zp0wi57U3RRsWIzpDWNbIQ.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Mh., Li, B. Propagation of Leaky Interface Waves at a Solid Boundary under Pulse Excitation. Acoust. Phys. 66, 604–612 (2020). https://doi.org/10.1134/S1063771020060123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771020060123

Keywords:

Navigation