Skip to main content
Log in

Combined Use of Passive Acoustic and Infrared Thermometry for Monitoring Uhf Heating

  • ACOUSTICS OF LIVING SYSTEMS. BIOLOGICAL ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Controlling deep temperature in parts of the human body is necessary for hyperthermia and thermal ablation used in oncology. UHF heating of single hands of patients was chosen as the model for this procedure. For the control, a plastisol cylinder was heated in the same manner: a substance with acoustic and thermophysical properties close to those of soft tissues of the human body. Passive acoustic thermometry was used to measure the deep temperature of the hand, and infrared thermometry was used to measure the surface temperature. After 5 min of UHF heating, the deep temperature of the hand increased by an average of 0.7 ± 0.6°C, and the surface temperature, by 0.8 ± 0.6°C. The same methods, as well as independent measurements, were used to determine the plastisol temperature. After the same procedure, the deep temperature of the plastisol increased by 4.3 ± 0.4°C; the surface temperature, by 3.2 ± 0.2°C; the temperature measured with a thermometer at the center of the object, by 3.3 ± 0.5°C. The smaller heating of the hand compared to the model object is related to effect of blood flow, which should be adequately taken into account in further studies. The noninvasive methods indicated in the study can be used to control temperature in oncology during hyperthermia and thermal ablation under the effect of a high-frequency electromagnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. A. Ushakov, Practical Physiotherapy, 2nd ed. (OOO “Meditsinskoe Informatsionnoe Agentstvo”, Moscow, 2009) [in Russian].

  2. L. Winter, E. Oberacker, K. Paul, Y. Ji, C. Oezerdem, P. Ghadjar, A. Thieme, V. Budach, P. Wust, and Th. Niendorf, Int. J. Hyperthermia 32 (1), 63 (2016). https://doi.org/10.3109/02656736.2015.1108462

    Article  Google Scholar 

  3. A. M. Pouch, T. W. Cary, S. M. Schultz, and C. M. Sehgal, J. Ultrasound Med. 29 (11), 1595 (2010). https://doi.org/10.3109/02656736.2015.1108462

    Article  Google Scholar 

  4. J. W. Hand, G. M. J. Van Leeuwen, S. Mizushina, J. B. Van de Kamer, K. Maruyama, T. Sugiura, D. V. Azzopardi, and A. D. Edwards, Phys. Med. Biol. 46 (7), 1885 (2001). https://doi.org/10.1088/0031-9155/46/7/311

    Article  Google Scholar 

  5. V. A. Burov, P. I. Darialashvili, S. N. Evtukhov, and O. D. Rumyantseva, Acoust. Phys. 50 (3), 243 (2004).

    Article  ADS  Google Scholar 

  6. V. I. Mirgorodskii, V. V. Gerasimov, and S. V. Peshin, Acoust. Phys. 52 (5), 606 (2006).

    Article  ADS  Google Scholar 

  7. A. A. Anosov, A. S. Kazansky, P. V. Subochev, A. D. Mansfel’d, and V. V. Klinshov, J. Acoust. Soc. Am. 137 (4), 1667 (2015). https://doi.org/10.1121/1.4915483

    Article  ADS  Google Scholar 

  8. T. Bowen, Automedica (N. Y., NY, U. S.) 8 (4), 247 (1987).

    Google Scholar 

  9. A. A. Anosov, P. V. Subochev, A. D. Mansfeld, and A. A. Sharakshane, Ultrasonics 82, 336 (2018). https://doi.org/10.1016/j.ultras.2017.09.015

    Article  Google Scholar 

  10. V. I. Passechnik, A. A. Anosov, and K. M. Bograchev, Crit. Rev. Biomed. Eng. 28 (3-4), 603 (2000). https://doi.org/10.1615/CritRevBiomedEng.v28.i34.410

    Article  Google Scholar 

  11. H. Amiri, B. Makkiabadi, A. Khani, and S. A. Irandoost, Front. Biomed. Technol. 6 (3), 133 (2019). https://doi.org/10.18502/fbt.v6i3.1696

    Article  Google Scholar 

  12. E. V. Krotov, M. V. Zhadobov, A. M. Reyman, G. P. Volkov, and V. P. Zharov, Appl. Phys. Lett. 81 (21), 3918 (2002). https://doi.org/10.1063/1.1521245

    Article  ADS  Google Scholar 

  13. A. A. Anosov, V. I. Pasechnik, and M. G. Isrefilov, Acoust. Phys. 45 (1), 14 (1999).

    ADS  Google Scholar 

  14. A. A. Anosov, R. V. Belyaev, V. A. Vilkov, M. V. Dvornikova, V. V. Dvornikova, A. S. Kazanskii, N. A. Kuryatnikova, and A. D. Mansfel’d, Acoust. Phys. 58 (5), 542 (2012).

    Article  ADS  Google Scholar 

  15. A. A. Anosov, V. I. Pasechnik, and K. M. Bograchev, Acoust. Phys. 44 (6), 629 (1998).

    ADS  Google Scholar 

  16. A. A. Anosov, R. V. Belyaev, V. A. Vilkov, A. S. Kazanskii, N. A. Kuryatnikova, and A. D. Mansfel’d, Acoust. Phys. 59 (4), 482 (2013).

    Article  ADS  Google Scholar 

  17. A. A. Anosov, A. V. Erofeev, and A. D. Mansfel’d, Acoust. Phys. 65 (4), 460 (2019).

    Article  ADS  Google Scholar 

  18. G. R. Ivanitskii, Usp. Fiz. Nauk 176 (12), 1293 (2006).

    Article  Google Scholar 

  19. L. Maggi, G. Cortela, M. A. von Kruger, C. Negreira, and W. C. de Albuquerque Pereira, in Proc. Int. Work-Conf. on Bioinformatics and Biomedical Engineering IWBBIO 2013 (Granada, 2013), p. 233.

  20. F. A. Duck, Physical Properties of Tissues: a Comprehensive Reference Book (Acad. press, 2013).

  21. A. A. Anosov, R. V. Belyaev, V. A. Vilkov, A. S. Kazanskii, A. D. Mansfel’d, and A. S. Sharakshané, Acoust. Phys. 54 (4), 464 (2008).

    Article  ADS  Google Scholar 

  22. A. A. Anosov, R. V. Belyaev, V. A. Vilkov, A. S. Kazanskii, A. D. Mansfel’d, and A. S. Sharakshané, Acoust. Phys. 55 (4-5), 454 (2009).

    Article  ADS  Google Scholar 

  23. V. I. Passechnik, Ultrasonics 32 (4), 293 (1994).

    Article  Google Scholar 

  24. N. Singla and J. Gahan, Curr. Opin. Urol. 26 (3), 248 (2016).

    Article  Google Scholar 

  25. L. Sidoff and D. E. Dupuy, Int. J. Hyperthermia 33 (1), 25 (2017).

    Article  Google Scholar 

  26. A. A. Anosov, R. V. Belyaev, V. A. Vilkov, M. V. Dvornikova, V. V. Dvornikova, A. S. Kazanskii, N. A. Kuryatnikova, and A. D. Mansfel’d, Acoust. Phys. 59 (1), 103 (2013).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project nos. 18-29-02052 MK, no. 20-02-00759), by the “Project to Improve the Competitiveness of Premiere Russian Universities among the World’s Leading Research and Educational Centers” (5-100), and within the state task of the Kotelnikov Institute of Radio Engineering and Electronics RAS (registration number AAAA-A19-119041590070-1). The multichannel acoustic thermograph is developed within the state assignment of IAP RAS (topic no. 0035-2019-0014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Anosov.

Ethics declarations

All procedures performed in research involving people comply with the ethical standards of the institutional committee on research ethics and the 1964 Declaration of Helsinki and its subsequent amendments. Informed voluntary consent was obtained from each of the participants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anosov, A.A., Erofeeev, A.V., Peshkova, K.Y. et al. Combined Use of Passive Acoustic and Infrared Thermometry for Monitoring Uhf Heating. Acoust. Phys. 66, 683–688 (2020). https://doi.org/10.1134/S1063771020060019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771020060019

Keywords:

Navigation