Skip to main content
Log in

Self-Deception about Fecundity in Women

Modeling the Burley Hypothesis

  • Published:
Human Nature Aims and scope Submit manuscript

Abstract

Concealed fecundity and extended female sexual receptivity have evolved in some primates, including humans, conferring advantages both within primarily monogamous relationships (e.g., benefits from paternity assurance) and from extrapair liaisons (e.g., better access to good genes). As humans evolved the intellectual capacity for decision-making, women became capable of altering their own fertility. In some circumstances, they may choose to ameliorate risks and responsibilities associated with pregnancy by reducing sexual motivation near the perceived most fecund time of their menstrual cycle. But three findings—a general inability of women to accurately recognize their own intervals of fecundity, high variability in ovulation timing, and unconscious transmission and reception of cues associated with fecundity—constitute a physiological and behavioral syndrome that can be considered self-deception. In this study, I develop a descriptive model to determine implications of the hypothesis that these features of female and male physiology and behavior have been shaped by natural selection in response to female decision-making. My analysis shows that consensus motivation for coitus between partners influences both the importance of variable ovulation date and the probability of conception, under the influence of self-deception. It also identifies priorities for future empirical work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexander, R. D. (1990). How did humans evolve? Reflections on the uniquely unique species. Ann Arbor: Museum of Zoology, University of Michigan.

    Google Scholar 

  • Alexander, R. D., & Noonan, K. M. (1979). Concealment of ovulation, parental care, and human social evolution. In N. A. Chagnon & W. Irons (Eds.), Evolutionary biology and human social behavior: An anthropological perspective (pp. 402–435). North Scituate: Duxbury Press.

    Google Scholar 

  • Andelman, S. J. (1987). Evolution of concealed ovulation in vervet monkeys (Cercopithecus aethiops). American Naturalist, 129, 785–799.

    Article  Google Scholar 

  • Anderson, K. G. (2006). How well does paternity confidence match actual paternity? Evidence from worldwide non-paternity rates. Current Anthropology, 47, 513–520.

    Article  Google Scholar 

  • Arnqvist, G., & Rowe, L. (2005). Sexual conflict. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Bailey, D. H., & Geary, D. C. (2009). Hominid brain evolution. Human Nature, 20, 67–79.

    Article  Google Scholar 

  • Baker, R. R., & Bellis, M. A. (1995). Human sperm competition: Copulation, masturbation, and infidelity. London: Chapman and Hall.

    Google Scholar 

  • Barbieri, R. L. (2014). The endocrinology of the menstrual cycle. Methods in Molecular Biology, 1154, 145–169.

    Article  Google Scholar 

  • Bechara, A., Damasio, H., & Damasio, A. R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex, 10, 295–307.

    Article  Google Scholar 

  • Benedek, T., & Rubenstein, B. B. (1939). The correlations between ovarian activity and psycho-dynamic processes, I: The ovulative phase. Psychosomatic Medicine, 1, 245–270.

    Article  Google Scholar 

  • Benedek, T., & Rubenstein B.B. (1942). The sexual cycle in women. Psychosomatic Medicine Monographs 3. Washington, DC: National Research Council.

  • Benshoof, L., & Thornhill, R. (1979). The evolution of monogamy and concealed ovulation in humans. Journal of Social and Biological Structures, 2, 95–106.

    Article  Google Scholar 

  • Bobst, C., & Lobmaier, J. S. (2012). Men’s preference for the ovulating female is triggered by subtle face shape differences. Hormones and Behavior, 62, 413–417.

    Article  Google Scholar 

  • Bongaarts, J. (2014). The impact of family planning programs on unmet need and demand for contraception. Studies in Family Planning, 45, 247–262.

    Article  Google Scholar 

  • Brewis, A., & Meyer, M. (2005). Demographic evidence that human ovulation is undetectable (at least in pair bonds). Current Anthropology, 46, 465–471.

    Article  Google Scholar 

  • Bullivant, S. B., Sellergren, S. A., Stern, K., Spencer, N. A., Jacob, S., Mennella, J. A., & McClintock, M. K. (2004). Women’s sexual experience during the menstrual cycle: Identification of the sexual phase by noninvasive measurement of luteinizing hormone. Journal of Sex Research, 41, 82–93.

    Article  Google Scholar 

  • Burley, N. (1979). The evolution of concealed ovulation. American Naturalist, 114, 835–858.

    Article  Google Scholar 

  • Butler, H. (1974). Evolutionary trends in primate sex cycles. Contributions to Primatology, 3, 2–35.

    Google Scholar 

  • Campbell, B. G. (Ed.). (1972). Sexual selection and the descent of man, 1871–1971. Chicago: Aldine.

    Google Scholar 

  • Caruso, S., Agnello, C., Malandrino, C., Lo Presti, L., Cicero, C., & Cianci, S. (2004). Do hormones influence women’s sex? Sexual activity over the menstrual cycle. Journal of Sexual Medicine, 11, 211–221.

    Article  Google Scholar 

  • Chapais, B. (2009). Primeval kinship: How pair-bonding gave birth to human society. Cambridge: Harvard University Press.

    Book  Google Scholar 

  • Clark, J. H. (1992). The loss of estrus behavior in humans: A physiological explanation. Medical Hypotheses, 38, 270–271.

    Article  Google Scholar 

  • Clayton, A. H., Clavet, G. J., McGarvey, E. L., Warnock, J. K., & Weiss, K. (1999). Assessment of sexual functioning during the menstrual cycle. Journal of Sex and Marital Therapy, 25, 281–291.

    Article  Google Scholar 

  • Cleland, J., Bernstein, S., Ezeh, A., Faundes, A., Glasier, A., & Innis, J. (2006). Family planning: The unfinished agenda. Lancet, 368, 1810–1827.

    Article  Google Scholar 

  • Cobey, K. D., Buunk, A. P., Pollet, T. V., Klipping, C., & Roberts, S. C. (2013). Men perceive their female partners, and themselves, as more attractive around ovulation. Biological Psychology, 94, 513–516.

    Article  Google Scholar 

  • Cole, L. A., Ladner, D. G., & Byrn, F. W. (2009). The normal variabilities of the menstrual cycle. Fertility and Sterility, 91, 522–527.

    Article  Google Scholar 

  • Colleran, H., & Mace, R. (2015). Social network- and community-level influences on contraceptive use: Evidence from rural Poland. Proceedings of the Royal Society of London B, 282, 20150398.

    Google Scholar 

  • Comfort, A. (1971). Likelihood of human pheromones. Nature, 230, 432–433.

    Article  Google Scholar 

  • Conde-Agudelo, A., Rosas-Bermúdez, A., & Kafury-Goeta, A. C. (2006). Birth spacing and risk of adverse perinatal outcomes: A meta-analysis. Journal of the American Medical Association, 295, 1809–1823.

    Article  Google Scholar 

  • Dixson, A. F. (2009). Sexual selection and the origins of human mating systems. Oxford: Oxford University Press.

    Google Scholar 

  • Doty, R. L., Ford, M., Preti, G., & Huggins, G. R. (1975). Changes in the intensity and pleasantness of human vaginal odors during the menstrual cycle. Science, 190, 1316–1318.

    Article  Google Scholar 

  • Dunson, D., Baird, D. D., Wilcox, A. J., & Weinberg, C. R. (1999). Day-specific probabilities of clinical pregnancy based on two studies with imperfect measures of ovulation. Human Reproduction, 14, 1835–1839.

    Article  Google Scholar 

  • Ellison, P. T. (2001). On fertile ground. Cambridge: Harvard University Press.

    Google Scholar 

  • Ellison, P. T. (2003). Energetics and reproductive effort. American Journal of Human Biology, 15, 342–351.

    Article  Google Scholar 

  • Ellison, P. T. (2008). Energetics, reproductive ecology, and human evolution. Paleoanthropology, 2008, 172–200.

    Google Scholar 

  • Englander-Golden, P., Chang, H. S., Whitmore, M. R., & Dienstbier, R. A. (1980). Female sexual arousal and the menstrual cycle. Journal of Human Stress, 6, 42–48.

    Article  Google Scholar 

  • Escasa-Dorne, M. J. (2015). Sexual functioning and commitment to their current relationship among breastfeeding and regularly cycling women in Manila, Philippines. Human Nature, 26, 89–101.

    Article  Google Scholar 

  • Etkin, W. (1954). Social behavior and the evolution of man's mental faculties. American Naturalist, 88, 129–142.

    Article  Google Scholar 

  • Etkin, W. (1963). Social behavioral factors in the emergence of man. Human Biology, 35, 299–310.

    Google Scholar 

  • Etkin, W. (1964). Types of social organization in birds and mammals. In W. Etkin (Ed.), Social behavior and organization among vertebrates (pp. 256–298). Chicago: University of Chicago Press.

    Google Scholar 

  • Fehrig, R.J., Schneider, M., & Raviele K. (2006). Variability in the phases of the menstrual cycle. Journal of Obstetrics, Gynecology, and Neonatal Nursing (JOGNN), 35, 376-384.

  • Fischer, H. E. (1998). Lust, attraction, and attachment in mammalian reproduction. Human Nature, 9, 23–52.

    Article  Google Scholar 

  • Fletcher, G. J., Simpson, J. A., Campbell, L., & Overall, N. C. (2015). Pair-bonding, romantic love, and evolution: The curious case of Homo sapiens. Perspectives in Psychological Science, 10, 20–36.

    Article  Google Scholar 

  • Gangestad, S. W., & Haselton, M. G. (2015). Human estrus: Implication for relationship science. Current Opinion in Psychology, 1, 45–51.

    Article  Google Scholar 

  • Gangestad, S.W., & Thornhill, R. (2008). Human oestrus. Proceedings of the Royal Society of London B, 275, 991-1000.

  • Gangestad, S. W., Garver-Apgar, C. E., Cousins, A. J., & Thornhill, R. (2014). Intersexual conflict across women’s ovulatory cycle. Evoluion and Human Behavior, 35, 302–308.

    Article  Google Scholar 

  • Gangestad, S. W., Thornhill, R., & Garver-Apgar, C. E. (2010). Men’s facial masculinity predicts changes in their female partner’s sexual interests across the ovulatory cycle, whereas men’s intelligence does not. Evolution and Human Behavior, 31, 412–424.

    Article  Google Scholar 

  • Gibson, M. A., & Mace, R. (2006). An energy-saving development initiative increases birth rate and childhood malnutrition in rural Ethiopia. PLoS Medicine, 3, e87.

    Article  Google Scholar 

  • Hafez, E. S. E. (Ed.). (1971). Comparative reproduction of nonhuman primates. Springfield: Charles C. Thomas.

  • Hardin, G. J. (1963). A second sermon on the mount. Perspectives in Biology and Medicine, 6, 366–371.

    Article  Google Scholar 

  • Harvey, S. M. (1987). Female sexual behavior: Fluctuations during the menstrual cycle. Journal of Psychometric Research, 31, 101–110.

    Article  Google Scholar 

  • Haselton, M. G. (2015). A new (or truly parsimonious) perspective? A comment on Havliček et al. Behavioral Ecology, 26, 1263–1264.

    Article  Google Scholar 

  • Havlíček, J., Cobey, K. D., Barrett, L., Klapilová, K., & Roberts, S. C. (2015). The spandrels of Santa Barbara? A new perspective on the peri-ovulation paradigm. Behavioral Ecology, 26, 1249–1260.

    Article  Google Scholar 

  • Heistermann, M.T., Ziegler, T., van Schaik, C.P., Launhardt, K., Winkler, P., & Hodges, J.K. (2001). Loss of oestrus, concealed ovulation and paternity confusion in free-ranging Hanuman langurs. Proceedings of the Royal Society of London B, 268, 2445-2451.

  • Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33(2–3), 61–83.

    Article  Google Scholar 

  • Hrdy, S. B. (2011). Mothers and others: The evolutionary origins of mutual understanding. Cambridge: Harvard University Press.

    Book  Google Scholar 

  • James, W. H. (1971). The distribution of coitus within the human intermenstruum. Journal of Biosocial Science, 3, 159–171.

    Article  Google Scholar 

  • Jankowiak, W. R., & Fischer, E. F. (1992). A cross-cultural perspective on romantic love. Ethnology, 31, 149–155.

    Article  Google Scholar 

  • Jolly, A. (1972). The evolution of primate behavior. New York: Macmillan.

    Google Scholar 

  • Kinsey, A. C., & staff of the Institute for Sex Research. (1953). Sexual behavior in the human female. Philadelphia: Saunders.

    Google Scholar 

  • Konner, M., & Worthman, C. (1980). Nursing frequency, gonadal function, and birth spacing among !Kung hunter-gatherers. Science, 207, 788–791.

    Article  Google Scholar 

  • Kuukasjärvi, S., Eriksson, C. J. P., Koskela, E., Mappes, T., Nissinen Markus, K., & Rantala, J. (2004). Attractiveness of women’s body odor over the menstrual cycle: The role of oral contraceptives and receiver sex. Behavioral Ecology, 15, 579–584.

    Article  Google Scholar 

  • Lancaster, J. B., & Alvarado, L. C. (2010). The hormonal platform for conception in natural fertility populations: Lactation and ovulation. American Journal of Human Biology, 22, 259–269.

    Google Scholar 

  • Lancaster, J. B., & Kaplan, H. S. (2009). The endocrinology of the human adaptive complex. In P. T. Ellison & P. G. Gray (Eds.), Endocrinology and social relationships (pp. 95–119). Cambridge: Harvard University Press.

  • Law Smith, M.J., Il Perrett, D., Jones, B.C., Cornwell, R.E., Moore, F.R., Feinberg, D.R., Boothroyd, L.G., Surrani, S.J., Stirrat, M.R., Whitten, S. et al. (2006). Facial appearance is a cue to oestrogen levels in women. Proceedings of the Royal Society of London B, 273, 135-140.

  • Lawson, D.W., Alvergne, A., and Gibson, M.A. (2012). The life-history trade-off between fertility and child survival. Proceedings of the Royal Society of London B, 279, 4755-4764.

  • Leonard, W. R., Robertson, M. L., Snodgrass, J. J., & Kuzawa, C. W. (2003). Metabolic correlates of hominid brain evolution. Comparative Biochemistry and Physiology, Part A: Molecular and Integrative Physiology, 136, 5–15.

    Article  Google Scholar 

  • Leonard, W. R., Snodgrass, J. J., & Robertson, M. L. (2007). Effects of brain evolution on human nutrition and metabolism. Annual Review of Nutrition, 27, 311–327.

    Article  Google Scholar 

  • Lobmaier, J. S., Klatt, W. K., Lory, V., & Probst, F. (2015). The many side of the periovulational coin: A comment on Havliček et al. Behavioral Ecology, 26, 1261–1262.

    Article  Google Scholar 

  • Lübke, K. T., & Pause, B. M. (2015). Always follow your nose: The functional significance of social chemosignals in human reproduction and survival. Hormones and Behavior, 68, 134–144.

    Article  Google Scholar 

  • Lunn, P. G. (1992). Breastfeeding patterns, maternal milk output and lactational infecundity. Journal of Biosocial Science, 24, 317–324.

    Article  Google Scholar 

  • Manning, J. T., Scutt, D., Whitehouse, G. H., Leinster, S. J., & Walton, J. M. (1996). Asymmetry and the menstrual cycle in women. Ethology and Sociobiology, 17, 129–143.

    Article  Google Scholar 

  • Marlowe, F. W. (2004). Is human ovulation concealed? Evidence from conception beliefs in a hunter-gatherer society. Archives of Sexual Behavior, 33, 427–432.

    Article  Google Scholar 

  • Matteo, S., & Rissman, E. F. (1984). Increased sexual activity during the mid-cycle portion of the human menstrual cycle. Hormones and Behavior, 18, 249–255.

    Article  Google Scholar 

  • McCullough, R. (1973). Rhythms of sexual desire and sexual activity in the human female. PhD dissertation, University of Oregon.

  • McNeilly, A. S., Tay, C. C., & Glasier, A. (1994). Physiological mechanisms underlying lactational amenorrhea. Annals of the New York Academy of Sciences, 709, 145–155.

    Article  Google Scholar 

  • Michael, R. P., Bonsall, R. W., & Kutner, R. W. (1975). Volatile fatty acids, “copulins,” in human vaginal secretions. Psychoneuroendocrinology, 1, 153–163.

    Article  Google Scholar 

  • Michael, R. P., Bonsall, R. W., & Warner, P. (1974). Human vaginal secretions: Volatile fatty acid content. Science, 186, 1217–1219.

    Article  Google Scholar 

  • Miller, G. F., Tybur, J., & Jordan, B. (2007). Ovulatory cycle effects on tip earnings by lap dancers: Economic evidence for human estrus? Evolution and Human Behavior, 28, 375–381.

    Article  Google Scholar 

  • Miller, S. L., & Maner, J. K. (2011). Ovulation as a male mating prime: Subtle signs of women’s fertility influence men’s mating cognition and behavior. Journal of Personality and Social Psychology, 100, 295–308.

    Article  Google Scholar 

  • Morris, D. (1967). The naked ape: A zoologist’s study of the human animal. London: Jonathan Cape.

    Google Scholar 

  • Motta-Mena, N. V., & Puts, D. A. (2017). Endocrinology of human female sexuality, mating, and reproductive behavior. Hormones and Behavior, 9, 19–35.

    Article  Google Scholar 

  • Münster, K., Schmidt, L., & Helm, L. (1992). Length and variation in the menstrual cycle—A cross-sectional study from a Danish county. British Journal of Obstetrics and Gynoecology, 99, 422–429.

    Article  Google Scholar 

  • Nakahashi, W. (2016). Coevolution of female ovulatory signals and male-male competition in primates. Journal of Theoretical Biology, 392, 12–22.

    Article  Google Scholar 

  • Nalbandov, A. V. (1973). Reproductive rhythms in animals. In W. A. Uricchio (Ed.), Proceedings of a research conference on natural family planning (pp. 31–42). Washington, DC: Human Life Foundation.

    Google Scholar 

  • Nunn, C. L. (1999). The evolution of exaggerated sexual swellings in primates and the graded-signal hypothesis. Animal Behaviour, 58, 229–246.

    Article  Google Scholar 

  • Pause, B. M. (2012). Processing of body odor signals by the human brain. Chemical Perception, 5, 55–63.

    Article  Google Scholar 

  • Pfeiffer, J. E. (1969). The emergence of man. New York: Harper & Row.

    Google Scholar 

  • Pillsworth, E. G., Haselton, M. G., & Buss, D. M. (2004). Ovulatory shifts in female sexual desire. Journal of Sex Research, 41, 55–65.

    Article  Google Scholar 

  • Poran, N. S. (1994). Cycle attractivity of human female odors. Advances in Biosciences, 93, 555–560.

    Google Scholar 

  • Preti, G., & Huggins, G. R. (1975). Cyclical changes in volatile acidic metabolites of human vaginal secretions and their relation to ovulation. Journal of Chemical Ecology, 1, 361–376.

    Article  Google Scholar 

  • Puts, D. A., Bailey, D. H., Cárdenas, R. A., Burriss, R. P., Welling, L. L., Wheatley, J. R., & Dawood, K. (2013). Women’s attractiveness changes with estradiol and progesterone across the ovulatory cycle. Hormones and Behavior, 63, 13–19.

    Article  Google Scholar 

  • Roberts, S.C., Havliček, J., Flegr, J., Hruskova, M., Little, A.C., Jones, B.C., Il Perrett, D., & Petrie, M. (2004). Female facial attractiveness increases during the fertile phase of the menstrual cycle. Proceedings of the Royal Society of London B, 271, S270-S272.

  • Roney, J. R. (2009). The role of sex hormones in the initiation of human mating relationships. In P. Ellison & P. Gray (Eds.), The endocrinology of social relationships (pp. 246–269). Cambridge: Harvard University Press.

    Google Scholar 

  • Roney, J. R., & Simmons, Z. L. (2013). Hormonal predictors of sexual motivation in natural menstrual cycles. Hormones and Behavior, 63, 636–645.

    Article  Google Scholar 

  • Scutt, D., & Manning, J. T. (1996). Ovary and ovulation: Symmetry and ovulation in women. Human Reproduction, 11, 2477–2480.

    Article  Google Scholar 

  • Shimoda, R., Campbell, A., & Barton, R. A. (2018). Women’s emotional and sexual attraction to men across the menstrual cycle. Behavioral Ecology, 29, 51–59.

    Article  Google Scholar 

  • Sievert, L. L., & Dubois, C. A. (2005). Validating signals of ovulation: Do women who think they know, really know? American Journal of Human Biology, 17, 310–320.

    Article  Google Scholar 

  • Sillen-Tullberg, B., & Møller, A. P. (1993). The relationship between concealed ovulation and mating systems in anthropoid primates: A phylogenetic analysis. American Naturalist, 141, 1–25.

    Article  Google Scholar 

  • Simmons, L. W., Firman, R. C., Rhodes, G., & Peters, M. (2004). Human sperm competition: Testis size, sperm production, and rates of extra-pair copulations. Animal Behaviour, 68, 297–302.

    Article  Google Scholar 

  • Singh, D., & Bronstad, P.M. (2001). Female body odour is a potential cue to ovulation. Proceedings of the Royal Society of London B, 268, 797-801.

  • Spuhler, J. N. (1979). Continuities and discontinuities in anthropoid-hominid behavioral evolution: Bipedal locomotion and sexual receptivity. In N. A. Chagnon & W. Irons (Eds.), Evolutionary biology and human social behavior: An anthropological perspective (pp. 454–461). North Scituate: Duxbury Press.

    Google Scholar 

  • Stallman, R. R., & Froelich, J. W. (2000). Primate sexual swellings as coevolved signal systems. Primates, 41, 1–16.

    Article  Google Scholar 

  • Stern, J. M., Konner, M., Herman, T. N., & Reichlin, S. (1986). Nursing behavior, prolactin and postpartum amenorrhoea during prolonged lactation in American and !Kung mothers. Clinical Endocrinology, 25, 247–258.

    Article  Google Scholar 

  • Stirnemann, J. J., Samson, A., Bernard, J. P., & Thalabard, J. C. (2013). Day-specific probabilities of conception in fertile cycles resulting in spontaneous pregnancies. Human Reproduction, 28, 1110–1116.

    Article  Google Scholar 

  • Symons, D. (1979). The evolution of human sexuality. Oxford: Oxford University Press.

    Google Scholar 

  • Tay, C. C., Glasier, A. F., & McNeilly, A. S. (1996). Twenty-four-hour patterns of prolactin secretion during lactation and the relationship to suckling and the resumption of fertility in breast-feeding women. Human Reproduction, 11, 950–955.

    Article  Google Scholar 

  • Thornhill, R., & Gangestad, W. W. (2008). The evolutionary biology of human female sexuality. Oxford: Oxford University Press.

    Google Scholar 

  • Thornhill, R., and Gangestad, W.W. (2015). The functional design and phylogeny of women’s sexuality. In T. K. Shackelford & R. D. Hansen (Eds.), The evolution of sexuality (pp. 149–184). Springer International.

  • Thornhill, R., Gangestad, W. W., Miller, R., Scheyd, G., McCollough, J. K., & Franklin, M. (2003). Major histocompatibility complex genes, symmetry, and body scent attractiveness in men and women. Behavioral Ecology, 14, 668–678.

  • Treloar, A. A. (1973). Variations in the human menstrual cycle. In W. A. Uricchio (Ed.), Proceedings of a research conference on natural family planning (pp. 64–77). Washington, DC: Human Life Foundation.

    Google Scholar 

  • Tsui, A. D., de Silva, S. V., & Marinshaw, R. (1991). Pregnancy avoidance and coital behavior. Demography, 28, 101–117.

    Article  Google Scholar 

  • Turke, P. W. (1984). Effects of ovulatory concealment and synchrony on protohominid mating systems and parental roles. Ethology and Sociobiology, 5, 33–44.

    Article  Google Scholar 

  • Udry, J. R., & Morris, N. M. (1968). Distribution of coitus in the menstrual cycle. Nature, 220, 593–596.

    Article  Google Scholar 

  • Uricchio, W. A. (Ed.). (1973). Proceedings of a research conference on natural family planning. Washington, DC: Human Life Foundation.

    Google Scholar 

  • Vesco, K. K., Sharma, A. J., Dietz, P. M., Rizzo, J. H., Callaghan, W. M., England, L., Bruce, F. C., Bachman, D. J., Stevens, V. J., & Hornbrook, M. C. (2011). Newborn size among obese women with weight gain outside the Institute of Medicine recommendation. Obstetrics & Gynecology, 117, 812–818.

    Article  Google Scholar 

  • Wilcox, A. J., Weinberg, C. R., & Baird, D. D. (1995). Timing of sexual intercourse in relation to ovulation. Effects on the probability of conception, survival of the pregnancy, and sex of the baby. New England Journal of Medicine, 333, 1517–1521.

    Article  Google Scholar 

  • Wilcox, A. J., Dunson, D., & Baird, D. D. (2000). The timing of the “fertile window” in the menstrual cycle: Day-specific estimates from a prospective study. Biostatistical Medical Journal (BMJ), 321, 1259–1262.

  • Wilcox, A. J., Baird, D. D., Dunson, D. B., McConnaughey, D. R., Kesner, J. S., & Weinberg, C. R. (2004). On the frequency of intercourse around ovulation: Evidence for biological influences. Human Reproduction, 19, 1539–1543.

    Article  Google Scholar 

  • Wood, J. W. (1994). Dynamics of human reproduction: Biology, biometry, demography. New York: Aldine de Gruyter.

    Google Scholar 

Download references

Acknowledgments

I thank Monique Borgerhoff-Mulder, Chip Bruce, Susan Bruce, Louis Calistro Alvarado, Vinnie Cassone, Kaylynne Glover, Jan Havlíček, Cristina Moya, Pete Richerson, Sarah Jane Roberts, Andy Sih, Pete Trimmer, Madison Von Dehlen, and Dave Westneat for comments and suggestions; Madison Von Dehlen for tracking down parameter values; and the Howard Hugues Medical Institute–sponsored UK STEMCats Program (V. Cassone, PI) for stimulating related work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip H. Crowley.

Ethics declarations

Statements on Ethics, Conflicts of Interest, Access, and Funding Sources

No human or animal subjects were used in the study. The author declares no conflicts of interest. Computer programs written in MATLAB® that were used in this project are available on request from the author. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Finding the Expected Level of Female Desire

Appendix: Finding the Expected Level of Female Desire

Since female desire is generally variable over the menstrual cycle, we must find the expectation over the cycle (DF), based on the frequencies of ovulation times and desire magnitudes associated with each. (We assume that male desire remains constant at DM = mx during the fecundity window.) We can obtain the expected female desire at ovulation time xo (DO(xo)) analytically for the piecewise quadratic female desire function as follows:

$$ {\displaystyle \begin{array}{l}{D}_1\left({x}_o\right)=\frac{1}{f_w}{\int}_{x_o-{f}_w-{x}_m}^{x_o-{x}_m}{D}_{Q1}\left(x-{x}_m\right) dx=\frac{1}{f_w}\left\{{f}_x{f}_w-\frac{\left({f}_x-{f}_n\right)\left[{\left({x}_o-{x}_m\right)}^2-{\left({x}_o-{f}_w-{x}_m\right)}^2\right]}{x_n-{x}_m}+\frac{\left({f}_x-{f}_n\right)\left[{\left({x}_o-{x}_m\right)}^3-{\left({x}_o-{f}_w-{x}_m\right)}^3\right]}{3{\left({x}_n-{x}_m\right)}^2}\right\},\mathrm{for}{x}_o<{x}_n;\\ {}{D}_2\left({x}_o\right)=\frac{1}{f_w}{\int}_{x_o-{f}_w-{x}_m}^{x_n-{x}_m}{D}_{Q1}\left(x-{x}_m\right) dx+\frac{1}{f_w}{\int}_0^{x_o-{x}_n}{D}_{Q2}\left(x-{x}_n\right) dx=\frac{1}{f_w}\left\{{f}_x\left({x}_n+{f}_w-{x}_o\right)-\frac{\left({f}_x-{f}_n\right)\left[{\left({x}_n-{x}_m\right)}^2-{\left({x}_o-{f}_w-{x}_m\right)}^2\right]}{x_n-{x}_m}+\frac{\left({f}_x-{f}_n\right)\left[{\left({x}_n-{x}_m\right)}^3-{\left({x}_o-{f}_w-{x}_m\right)}^3\right]}{3{\left({x}_n-{x}_m\right)}^2}\right\}\\ {}\begin{array}{l}+\frac{1}{f_w}\left\{{f}_n\left({x}_o-{x}_n\right)-\frac{\left({f}_i-{f}_n\right){\left({x}_o-{x}_n\right)}^3}{3{\left({x}_c-{x}_n\right)}^2}\right\},\mathrm{for}{x}_n<{x}_o<{x}_n+{f}_w;\mathrm{and}\\ {}{D}_3\left({x}_o\right)=\frac{1}{f_w}{\int}_{x_o-{f}_w-{x}_n}^{x_o-{x}_n}{D}_{Q2}\left(x-{x}_n\right) dx=\frac{1}{f_w}\left\{{f}_n{f}_w+\frac{\left({f}_i-{f}_n\right)\left[{\left({x}_o-{x}_n\right)}^3-{\left({x}_o-{f}_w-{x}_n\right)}^3\right]}{3{\left({x}_c-{x}_n\right)}^2}\right\},\\ {}\mathrm{for}\ {x}_o>{x}_n+{f}_w.\end{array}\end{array}}\kern0.75em $$
(6)

The consensus desire function D is in text eq. (3). For each ovulation interval xo + dxo, the chance of conception during fw is

$$ {P}_C={F}_O\left({x}_o\right)\left(1-{e}^{-\upvarphi D\left({x}_o\right){f}_w}\right)d{x}_o. $$
(7)

But because D(xo) is defined piecewise, this function must be integrated accordingly to find the probability of conception over a cycle as

$$ {P}_C=\left\{\begin{array}{c}{\int}_{x_{m+{f}_w}}^{x_n}{F}_O\left({x}_o\right)\left(1-{e}^{-\upvarphi {D}_1\left({x}_o\right){f}_w}\right){dx}_o+{\int}_{x_n}^{\left({x}_n+{f}_w\right)}{F}_O\left({x}_o\right)\left(1-{e}^{-\upvarphi {D}_2\left({x}_o\right){f}_w}\right){dx}_o\\ {}+{\int}_{x_n+{f}_w}^{x_c}{F}_O\left({x}_o\right)\left(1-{e}^{-\upvarphi {D}_3\left({x}_o\right){f}_w}\right){dx}_o\end{array}\right\}. $$
(8)

Assuming 12 cycles per year, the probability of conception over a year is then

$$ {P}_Y=1-{\left(1-{P}_C\right)}^{12}. $$
(9)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crowley, P.H. Self-Deception about Fecundity in Women. Hum Nat 31, 421–442 (2020). https://doi.org/10.1007/s12110-020-09384-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12110-020-09384-3

Keywords

Navigation