Skip to main content
Log in

Generalized Discrimination Between Symmetric Coherent States for Eavesdropping in Quantum Cryptography

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Symmetric coherent states are of interest in quantum cryptography, since for such states there is an upper bound for unambiguous state discrimination (USD) probability, which is used to resist USD attack. But it is not completely clear what an eavesdropper can do for shorter channel length, when USD attack in not available. We consider the task of generalized discrimination between symmetric coherent states and construct an operation which enlarges the information content of the states with fixed failure probability. We apply this transformation to develop a zero-error eavesdropping strategy for quantum cryptography on symmetric coherent states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

REFERENCES

  1. Ch. H. Bennett and G. Brassard, ‘‘Quantum cryptography: Public key distribution and coin tossing,’’ in Proceedings of the International Conference on Computers, Systems and Signal Processing, Bangalore, India, December 10–12, 1984, pp. 175–179.

  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, ‘‘Quantum cryptography,’’ Rev. Mod. Phys. 74, 145 (2002).

    Article  Google Scholar 

  3. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lütkenhaus, and M. Peev, ‘‘The security of practical quantum key distribution,’’ Rev. Mod. Phys. 81, 1301 (2009).

    Article  Google Scholar 

  4. P. Shor and J. Preskill, ‘‘Simple proof of security of the BB84 quantum key distribution protocol,’’ Phys. Rev. Lett. 85, 441 (2000).

    Article  Google Scholar 

  5. R. Renner, N. Gisin, and B. Kraus, ‘‘Information-theoretic security proof for quantum-key-distribution protocols,’’ Phys. Rev. A 72, 012332 (2005).

  6. G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, ‘‘Limitations on practical quantum cryptography,’’ Phys. Rev. Lett. 85, 1330 (2000).

    Article  Google Scholar 

  7. H. K. Lo, X. Ma, and K. Chen, ‘‘Decoy state quantum key distribution,’’ Phys. Rev. Lett. 94, 230504 (2005).

  8. M. Dusek, M. Jahma, and N. Lütkenhaus, ‘‘Unambiguous state discrimination in quantum cryptography with weak coherent states,’’ Phys. Rev. A 62, 022306 (2000).

  9. A. Chefles and S. M. Barnett, ‘‘Optimum unambiguous discrimination between linearly independent symmetric states,’’ Phys. Lett. A 250, 223–229 (1998).

    Article  Google Scholar 

  10. G. P. Miroshnichenko, A. V. Kozubov, A. A. Gaidash, A. V. Gleim, and D. B. Horoshko, ‘‘Security of subcarrier wave quantum key distribution against the collective beam-splitting attack,’’ Opt. Express 26, 11292–11308 (2018).

    Article  Google Scholar 

  11. A. S. Avanesov and D. A. Kronberg, ‘‘Coherent-state quantum cryptography using pseudorandom number generators,’’ Quantum Electron. 49, 974 (2019).

    Article  Google Scholar 

  12. K. S. Kravtsov and S. N. Molotkov, ‘‘Practical quantum key distribution with geometrically uniform states,’’ Phys. Rev. A 100, 042329 (2019).

  13. A. S. Holevo, ‘‘Bounds for the quantity of information transmitted by a quantum communication channel,’’ Probl. Inform. Transm. 9, 177 (1973).

    Google Scholar 

  14. S. Croke, E. Andersson, S. M. Barnett, C. R. Gilson, and J. Jeffers, ‘‘Maximum confidence quantum measurements,’’ Phys. Rev. Lett. 96, 070401 (2006).

  15. A. S. Holevo, ‘‘The capacity of the quantum channel with general signal states,’’ IEEE Trans. Inform. Theory 44, 269–273 (1998).

    Article  MathSciNet  Google Scholar 

  16. B. Schumacher and M. D. Westmoreland, ‘‘Sending classical information via noisy quantum channels,’’ Phys. Rev. A 56, 131 (1997).

    Article  Google Scholar 

  17. C. H. Bennett, ‘‘Quantum cryptography using any two nonorthogonal states,’’ Phys. Rev. Lett. A 68, 3121 (1992).

    Article  MathSciNet  Google Scholar 

  18. D. A. Kronberg, ‘‘A simple coherent attack and practical security of differential phase shift quantum cryptography,’’ Laser Phys. 24, 025202 (2014).

  19. D. A. Kronberg and Y. V. Kurochkin, ‘‘Role of intensity fluctuations in quantum cryptography with coherent states,’’ Quantum Electron. 48, 843 (2018).

    Article  Google Scholar 

  20. A. S. Avanesov, D. A. Kronberg, and A. N. Pechen, ‘‘Active beam splitting attack applied to differential phase shift quantum key distribution protocol,’’ p-Adic Numbers, Ultrametric Anal. Appl. 10, 222–232 (2018).

    MATH  Google Scholar 

  21. D. A. Kronberg, A. S. Nikolaeva, Y. V. Kurochkin, and A. K. Fedorov, ‘‘Quantum soft filtering for the improved security analysis of the coherent one-way quantum-key-distribution protocol,’’ Phys. Rev. A 101, 032334 (2020).

  22. Y. C. Eldar, ‘‘Mixed-quantum-state detection with inconclusive results,’’ Phys. Rev. A 67, 042309 (2003).

  23. K. Nakahira, T. S. Usuda, and K. Kato, ‘‘Discrimination between geometrically uniform quantum states with inconclusive results,’’ Phys. Rev. A 86, 032316 (2012).

  24. U. Herzog, ‘‘Optimal measurements for the discrimination of quantum states with a fixed rate of inconclusive results,’’ Phys. Rev. A 91, 042338 (2015).

  25. K. Nakahira, K. Kato, and T. S. Usuda, ‘‘Generalized quantum state discrimination problems,’’ Phys. Rev. A 91, 052304 (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Kronberg.

Additional information

(Submitted by S. A. Grigoryan)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kronberg, D.A. Generalized Discrimination Between Symmetric Coherent States for Eavesdropping in Quantum Cryptography. Lobachevskii J Math 41, 2332–2337 (2020). https://doi.org/10.1134/S1995080220120197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080220120197

Keywords:

Navigation