Skip to main content
Log in

Quantum State Tomography Via Sequential Uses of the Same Informationally Incomplete Measuring Apparatus

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

State of a \(d\)-dimensional quantum system can only be inferred by performing an informationally complete measurement with \(m\geqslant d^{2}\) outcomes. However, an experimentally accessible measurement can be informationally incomplete. Here we show that a single informationally incomplete measuring apparatus is still able to provide all the information about the quantum system if applied several times in a row. We derive a necessary and sufficient condition for such a measuring apparatus and give illustrative examples for qubits, qutrits, general \(d\)-level systems, and composite systems of \(n\) qubits, where such a measuring apparatus exists. We show that projective measurements and Lüders measurements with 2 outcomes are useless in the considered scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. A. S. Holevo, Statistical Structure of Quantum Theory (Springer, Berlin, 2001).

    Book  Google Scholar 

  2. T. Heinosaari and M. Ziman, The Mathematical Language of Quantum Theory (Cambridge Univ. Press, Cambridge, 2012).

    MATH  Google Scholar 

  3. E. B. Davies and J. T. Lewis, ‘‘An operational approach to quantum probability,’’ Comm. Math. Phys. 17, 239–260 (1970).

    Article  MathSciNet  Google Scholar 

  4. A. S. Holevo, Quantum Systems, Channels, Information. A Mathematical Introduction (de Gruyter, Berlin, Boston, 2012).

  5. C. Carmeli, T. Heinosaari, and A. Toigo, ‘‘Sequential measurements of conjugate observables,’’ J. Phys. A: Math. Theor. 44, 285304 (2011).

  6. C. Carmeli, T. Heinosaari, and A. Toigo, ‘‘Informationally complete joint measurements on finite quantum systems,’’ Phys. Rev. A 85, 012109 (2012).

  7. A. Kalev, J. Shang, and B.-G. Englert, ‘‘Symmetric minimal quantum tomography by successive measurements,’’ Phys. Rev. A 85, 052116 (2012).

  8. A. Di Lorenzo, ‘‘Sequential measurement of conjugate variables as an alternative quantum state tomography,’’ Phys. Rev. Lett. 110, 010404 (2013).

  9. J. S. Lundeen and C. Bamber, ‘‘Procedure for direct measurement of general quantum states using weak measurement,’’ Phys. Rev. Lett. 108, 070402 (2012).

  10. G. S. Thekkadath, L. Giner, Y. Chalich, M. J. Horton, J. Banker, and J. S. Lundeen, ‘‘Direct measurement of the density matrix of a quantum system,’’ Phys. Rev. Lett. 117, 120401 (2016).

  11. L. Calderaro, G. Foletto, D. Dequal, P. Villoresi, and G. Vallone, ‘‘Direct reconstruction of the quantum density matrix by strong measurements,’’ Phys. Rev. Lett. 121, 230501 (2018).

  12. E. Haapasalo, T. Heinosaari, and Y. Kuramochi, ‘‘Saturation of repeated quantum measurements,’’ J. Phys. A: Math. Theor. 49, 33LT01 (2016).

  13. I. A. Luchnikov and S. N. Filippov, ‘‘Quantum evolution in the stroboscopic limit of repeated measurements,’’ Phys. Rev. A 95, 022113 (2017).

  14. Yu. I. Bogdanov, G. Brida, M. Genovese, S. P. Kulik, E. V. Moreva, and A. P. Shurupov, ‘‘Statistical estimation of the efficiency of quantum state tomography protocols,’’ Phys. Rev. Lett. 105, 010404 (2010).

  15. S. N. Filippov and V. I. Man’ko, ‘‘Unitary and non-unitary matrices as a source of different bases of operators acting on Hilbert spaces,’’ J. Russ. Laser Res. 32, 56–67 (2011).

    Google Scholar 

  16. S. N. Filippov, S. Gudder, T. Heinosaari, and L. Leppäjärvi, ‘‘Operational restrictions in general probabilistic theories,’’ Found. Phys. 50, 850–876 (2020).

    Article  MathSciNet  Google Scholar 

  17. S. N. Filippov, T. Heinosaari, and L. Leppäjärvi, ‘‘Simulability of observables in general probabilistic theories,’’ Phys. Rev. A 97, 062102 (2018).

  18. S. N. Filippov, ‘‘Quantum mappings and characterization of entangled quantum states,’’ J. Math. Sci. 241, 210–236 (2019).

    Article  Google Scholar 

  19. M. Ozawa, ‘‘Quantum measuring processes of continuous observables,’’ J. Math. Phys. 25, 79–87 (1984).

    Article  MathSciNet  Google Scholar 

  20. M. Ozawa, ‘‘Conditional probability and a posteriori states in quantum mechanics,’’ Publ. Res. Inst. Math. Sci., Kyoto Univ. 21, 279–295 (1985).

    Article  Google Scholar 

  21. J. Eisert, M. P. Müller, and C. Gogolin, ‘‘Quantum measurement occurrence is undecidable,’’ Phys. Rev. Lett. 108, 260501 (2012).

  22. M. Hayashi, Quantum Information (Springer, Berlin, 2006).

    MATH  Google Scholar 

  23. P. Busch and P. J. Lahti, ‘‘The determination of the past and the future of a physical system in quantum mechanics,’’ Found. Phys. 19, 633–678 (1989).

    Article  MathSciNet  Google Scholar 

  24. S. N. Filippov and V. I. Man’ko, ‘‘Inverse spin-s portrait and representation of qudit states by single probability vectors,’’ J. Russ. Laser Res. 31, 32–54 (2010).

    Article  Google Scholar 

  25. Yu. I. Bogdanov, S. P. Kulik, E. V. Moreva, I. V. Tikhonov, A. K. Gavrichenko, ‘‘Optimization of a quantum tomography protocol for polarization qubits,’’ JETP Lett. 91, 686–692 (2010).

    Article  Google Scholar 

  26. J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves, ‘‘Symmetric informationally complete quantum measurements,’’ J. Math. Phys. 45, 2171 (2004).

    Article  MathSciNet  Google Scholar 

  27. S. N. Filippov and V. I. Man’ko, ‘‘Symmetric informationally complete positive operator valued measure and probability representation of quantum mechanics,’’ J. Russ. Laser Res. 31, 211–231 (2010).

    Article  Google Scholar 

  28. W. K. Wootters and B. D. Fields, ‘‘Optimal state-determination by mutually unbiased measurements,’’ Ann. Phys. 191, 363–381 (1989).

    Article  MathSciNet  Google Scholar 

  29. A. Komisarski and A. Paszkiewicz, ‘‘On a system of measurements which is complete in a statistical sense,’’ Infinite Dimens. Anal., Quantum Prob. Rel. Top. 16, 1350026 (2013).

  30. S. Brierley, S. Weigert, and I. Bengtsson, ‘‘All mutually unbiased bases in dimensions two to five,’’ Quantum Inform. Comput. 10, 803–820 (2010).

    MathSciNet  MATH  Google Scholar 

  31. I. A. Luchnikov, S. V. Vintskevich, D. A. Grigoriev, and S. N. Filippov, ‘‘Machine learning non-Markovian quantum dynamics,’’ Phys. Rev. Lett. 124, 140502 (2020).

Download references

ACKNOWLEDGMENTS

The authors thank Teiko Heinosaari for useful comments and bringing Refs. [12, 23, 29] to our attention.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Zhuravlev or S. N. Filippov.

Additional information

(Submitted by A. S. Holevo)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuravlev, V.A., Filippov, S.N. Quantum State Tomography Via Sequential Uses of the Same Informationally Incomplete Measuring Apparatus. Lobachevskii J Math 41, 2405–2414 (2020). https://doi.org/10.1134/S1995080220120434

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080220120434

Keywords:

Navigation