Skip to main content
Log in

Algebraic Method of Nonparametric Identification of Abnormal Modes of the Power System as a Dynamic MIMO System

  • DATA PROCESSING AND IDENTIFICATION
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

An approach is proposed to identify abnormal modes of a power system in real time, using only the data of synchronized vector measurements and that does not require a priori information about the parameters of its mathematical model. The algorithmic base of the method is the algebraic criterion of consistency of the linear matrix equation for the identification of the mathematical model of the power system; it does not imply the solution of parametric identification or prediction problems, does not use statistical calculations, and does not require preliminary training or long-term tuning. The effectiveness of the method is demonstrated by the example of detecting the moment an emergency situation arises in the Omsk power system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. R. E. Kalman, P. L. Falb and M. A. Arbib, Topics in Mathematical System Theory (McGraw-Hill, New York, 1969).

    MATH  Google Scholar 

  2. T. Kailath, Linear Systems (Prentice Hall, NJ, 1990).

    MATH  Google Scholar 

  3. H. A. Nour-Eldin, “Linear multivariable systems controllability and observability: Numerical aspects,” in Systems and Control Encyclopedia, Ed. by M. G. Singh (Pergamon, Oxford, UK, 1987), pp. 2816–2827.

    Google Scholar 

  4. A. A. Golovan and N. A. Parusnikov, “On the connection between the concept of stochastic estimability and singular value decompositions of matrices,” Avtom. Telemekh., No. 2, 45–50 (1998).

  5. M. G. Gadzhiev, E. A. Gulevich, V. N. Ryabchenko, and Yu. V. Sharov, “About PMU placement for the identification of the mathematical model of the power system mode,” Elektrichestvo, No. 5, 4–10 (2018).

    Article  Google Scholar 

  6. M. M. Eissa, M. E. Masoud, and M. M. M. Elanwar, “A novel back up wide area protection technique for power transmission grids using phasor measurement unit,” IEEE Trans. Power Deliv. 25, 270–278 (2010).

    Article  Google Scholar 

  7. M. K. Neyestanaki and A. M. Ranjbar, “An adaptive PMU-based wide area backup protection scheme for power transmission lines,” IEEE Trans. Smart Grid 6, 1550–1559 (2015).

    Article  Google Scholar 

  8. Y. Ge, A. J. Flueck, D. K. Kim, et al., “Power system real-time event detection and associated data archival reduction based on synchrophasors,” IEEE Trans. Smart Grid 6, 2088–2097 (2015).

    Article  Google Scholar 

  9. M. Biswal, S. M. Brahma, and H. Cao, “Supervisory protection and automated event diagnosis using PMU data,” IEEE Trans. Power Deliv. 31, 1855–1863 (2016).

    Article  Google Scholar 

  10. T. Overbye, P. Sauer, C. DeMarco, et al., “Using PMU data to increase situational awareness,” Power Syst. Eng. Res. Center Publ. 21, 10–16 (2010).

    Google Scholar 

  11. K. B. Swain and C. C. Mahato, “A brief review on fault detection, classification and location on transmission lines using PMUs,” Int. J. Manage. Technol. Eng. 8, 2608–2618 (2018).

    Google Scholar 

  12. F. Aminifar, M. Fotuhi-Firuzabad, A. Safdarian, A. Davoudi, and M. Shahidehpour, “Synchrophasor measurement technology in power systems: Panorama and state-of-the-art,” IEEE Access 2, 1607–1628 (2014).

    Article  Google Scholar 

  13. E. Yu. Zybin and V. V. Kos’yanchuk, “An algebraic criterion for detecting the fact and time a fault occurs in control systems of dynamic plants,” J. Comput. Syst. Sci. Int. 55, 546 (2016).

    Article  MathSciNet  Google Scholar 

  14. L. A. Mironovskii, Functional Diagnostics of Dynamic Systems (MGU-GRIF, Moscow, St. Petersburg, 1998) [in Russian].

    Google Scholar 

  15. L. P. Kolodezhnyi and A. V. Chernodarov, Reliability and Technical Diagnostics (VVA im. N. E. Zhukovskogo and Yu. A. Gagarina, Moscow, 2010) [in Russian].

  16. M. Kh. Khusniyarov, M. F. Sunagatov, and D. S. Matveev, Fundamentals of Reliability and Diagnostics of Technical Systems (UGNTU, Ufa, 2011) [in Russian].

    Google Scholar 

  17. A. N. Zhirabok, “Diagnostic observers and parity relation: Comparative analysis,” Autom. Remote Control 73, 873 (2012).

    Article  MathSciNet  Google Scholar 

  18. K. Chen, C. Huang, and J. He, “Fault detection, classification and location for transmission lines and distribution systems: A review on the methods,” High Voltage 1, 25–33 (2016).

    Article  Google Scholar 

  19. F. Mohammadi, C. Zheng, and R. Su, “Fault diagnosis in smart grid based on data-driven computational methods,” in Proceedings of the 5th International Conference on Applied Research in Electrical, Mechanical, and Mechatronics Engineering, Tehran, Iran, 2019, Vol. 24.

  20. Z. Yang, Yu Chen, N. Zhou, et al., “Data-driven online distributed disturbance location for large-scale power grids,” IEEE Trans. Smart Grid 2, 381–390 (2019).

    Article  Google Scholar 

  21. M. Mousa, S. Abdelwahed, J. Kluss, et al., “Review of fault types, impacts, and management solutions in smart grid systems,” Smart Grid Renewable Energy 10 (04), 98 (2019).

    Article  Google Scholar 

  22. M. Glavic and T. van Cutsem, “A short survey of methods for voltage instability detection,” in Proceedings of the IEEE Power and Energy Society General Meeting, Detroit (IEEE, 2011), pp. 1–8.

  23. Y. Jiang, S. Yin, and O. Kaynak, “Data-driven monitoring and safety control of industrial cyber-physical systems: Basics and beyond,” IEEE Access 6, 47374–47384 (2018).

    Article  Google Scholar 

  24. Y. Xiong, W. Yao, W. Chen, et al., “A data-driven approach for fault time determination and fault area location using random matrix theory,” Int. J. Electr. Power Energy Syst. 116, 105566 (2020).

    Article  Google Scholar 

  25. D. Huang, Q. Chen, S. Ma, et al., “Wide-area measurement-based model-free approach for online power system transient stability assessment,” Energies 11, 958 (2018).

    Article  Google Scholar 

  26. S. Xu, “A survey of knowledge-based intelligent fault diagnosis techniques,” J. Phys.: Conf. Ser. 1187, 032006 (2019).

    Google Scholar 

  27. H. A. Tokel, R. Al Halaseh, G. Alirezaei, et al., “A new approach for machine learning-based fault detection and classification in power systems,” in Proceedings of the IEEE Power Energy Society Innovative Smart Grid Technologies Conference ISGT, Sarajevo (IEEE, 2018), pp. 1–5.

  28. M. Kesici, K. B. Saner, V. M. I. Genc, et al., “Wide area measurement based online monitoring and event detection using convolutional neural networks,” in Proceedings of the 7th International Istanbul Smart Grids and Cities Congress and Fair ICSG, Istanbul (IEEE, 2019), pp. 223–227.

  29. W. Li, D. Deka, M. Chertkov, et al., “Real-time faulted line localization and PMU placement in power systems through convolutional neural networks,” IEEE Trans. Power Syst. 34, 4640–465 (2019).

    Article  Google Scholar 

  30. A. Karić, T. Konjić, and A. Jahić, “Power system fault detection, classification and location using artificial neural networks,” in Proceedings of the International Symposium on Innovative and Interdisciplinary Applications of Advanced Technologies (Springer, Cham, 2017), pp. 89–101.

  31. M. G. Gadzhiev, M. Sh. Misrikhanov, V. N. Ryabchenko, and Yu. V. Sharov, Matrix Methods for Analysis and Management of Transient Processes in Electric Power Systems (MEI, Moscow, 2019) [in Russian].

    Google Scholar 

  32. N. E. Zubov, E. A. Mikrin, and V. N. Ryabchenko, Matrix Methods in the Theory and Practice of Automatic Control Systems of Aircraft (MGTU im. N. E. Baumana, Moscow, 2016) [in Russian].

  33. B. T. Polyak and P. S. Shcherbakov, Robust Stability and Control (Nauka, Moscow, 2002) [in Russian].

    Google Scholar 

  34. K. Zhou, Essentials of Robust Control (Prentice Hall, Upper Saddle River, NJ, 1998).

    Google Scholar 

  35. D. S. Watkins, Fundamentals of Matrix Computations (Wiley, Hoboken, 2010).

    MATH  Google Scholar 

  36. D. S. Bernstein, Matrix Mathematics (Princeton Univ. Press, Princeton, 2005).

    Google Scholar 

  37. C. B. Chang and M. Athans, “State estimation for discrete systems with switching parameters,” IEEE Trans. Aerospace Electron. Syst., No. 3, 418–425 (1978).

  38. J. D. Hamilton, “Analysis of time series subject to changes in regime,” J. Econometr., No. 45 (1), 39–70 (1990).

  39. Z. Ghahramani and G. E. Hinton, “Switching state-space models,” Tech. Report CRG-TR-96-2 (Univ. of Toronto, Toronto, 1996).

  40. E. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky, “Nonparametric bayesian learning of switching linear dynamical systems,” Adv. Neural Inform. Process. Syst., No. 1, 457–464 (2009).

  41. E. Yu. Zybin, M. Sh. Misrikhanov, and V. N. Ryabchenko, “Minimal parametrization of solutions of linear matrix equations,” Vestn. IGEU, No. 6, 127–131 (2004).

    Google Scholar 

  42. E. Yu. Zybin, “On identifiability of closed-loop linear dynamical systems under normal operating conditions,” Izv. YuFU, Tekh. Nauki, No. 4 (166), 160–170 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Zubov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galiaskarov, I.M., Zubov, N.E., Zybin, E.Y. et al. Algebraic Method of Nonparametric Identification of Abnormal Modes of the Power System as a Dynamic MIMO System. J. Comput. Syst. Sci. Int. 59, 845–853 (2020). https://doi.org/10.1134/S1064230720060039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230720060039

Navigation