Skip to main content
Log in

Neumann Boundary Problems for Parabolic Partial Differential Equations with Divergence Terms

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In this paper, we give a probabilistic interpretation for solutions to the Neumann boundary problems for a class of semi-linear parabolic partial differential equations (PDEs for short) with singular non-linear divergence terms. This probabilistic approach leads to the study on a new class of backward stochastic differential equations (BSDEs for short). A connection between this class of BSDEs and semi-linear PDEs is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Bally, V., Matoussi, A.: Weak solutions for SPDEs and backward doubly stochastic differential equations. J. Theoret. Proba. 14(1), 125–164 (2001)

    Article  MathSciNet  Google Scholar 

  3. Chen, Z.Q., Zhang, T.S.: Time-reversal and elliptic boundary value problems. Ann. Probab. 37, 1008–1043 (2009)

    Article  MathSciNet  Google Scholar 

  4. Chen, Z.Q., Zhang, T.S.: A probabilistic approach to mixed boundary value problems for elliptic operators with singular coefficients. Proc. Amer. Math Soc. 142, 2135–2149 (2014)

    Article  MathSciNet  Google Scholar 

  5. Darling, R.W.R., Pardoux, E.: Backwards SDE with Random Terminal Time and Applications to Semilinear Elliptic PDE. Ann. Prob. 25(3), 1135–1159 (1997)

    Article  MathSciNet  Google Scholar 

  6. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the edition (1998)

    Book  Google Scholar 

  7. Gröger, K.A.: W1,p-estimate for solutions of mixed boundary value problems for second order elliptic differential equations. Math. Ann. 283, 679–687 (1989)

    Article  MathSciNet  Google Scholar 

  8. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes De Gruyter Studies in Mathematics, vol. 19. Walter de Gruyter & Co., Berlin (1994)

    Book  Google Scholar 

  9. Hu, Y.: Probabilistic interpretation of a system of quasilinear elliptic partial differential equations under Neumann boundary conditions. Stoch. Proc. Appl. 48(1), 107–121 (1993)

    Article  MathSciNet  Google Scholar 

  10. El Karoui, N.: Backward stochastic differential equations: a general introduction. Backward Stochastic Differential Equations. In: El Karoui, N., Mazliak, L (eds.) Pitman Research Notes in Mathematics Series, Longman, Harlow, vol. 364, pp. 7–26 (1997)

  11. Lieberman, G.M.: Second Order Parabolic Differential Equations. World Scientific Publishing Co. Inc., River Edge (1996)

    Book  Google Scholar 

  12. Lions, P.L., Sznitman, A.S.: Stochastic Differential Equations with Reflecting Boundary Conditions. Comm. Pure Appl. Math. 37(4), 511–537 (1984)

    Article  MathSciNet  Google Scholar 

  13. Lyons, T.J., Stoica, I.L.: The limits of stochastic integrals of differential forms. Ann. Probab. 27, 1–49 (1999)

    MathSciNet  MATH  Google Scholar 

  14. Ma, Z.M., Röckner, M.: Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Springer, Berlin (1992)

    Book  Google Scholar 

  15. Oshima, Y.: Semi-Dirichlet forms and Markov processes. De Gruyter Studies in Mathematics, vol. 48. De Gruyter, Berlin (2013)

    Book  Google Scholar 

  16. Pardoux, E., Øksendal, B., Gjerde, J., Üstünel, A.S.: Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order. In: Decreusefond, L. (ed.) Progress in Probability, Stochastic Analysis and Related Topics VI, vol. 42, pp 79–127. Birkhäuser, Boston (1998)

  17. Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equations. Systems Control Lett. 14(1), 55–61 (1990)

    Article  MathSciNet  Google Scholar 

  18. Pardoux, E., Peng, S.: Backward stochastic differential equations and quasilinear parabolic partial differential equations. In: Rozuvskii, B. L., Sowers, R. B. (eds.) Stochastic Partial Differential Equations and their Applications (Lect. Notes Control Inf.Sci.), vol. 176, pp 200–217. Springer, Berlin (1992)

  19. Pardoux, E., Peng, S.: Backward doubly stochastic differential equations and systems of quasilinear SPDEs. Probab. Theory Related Fields 98, 209–227 (1994)

    Article  MathSciNet  Google Scholar 

  20. Pardoux, E., Zhang, S.: Generalized BSDEs and nonlinear Neumann boundary value problems. Probab. Theory Related Fields 110, 535–558 (1998)

    Article  MathSciNet  Google Scholar 

  21. Stoica, I.L.: A probabilistic interpretation of the divergence and BSDE’s. Stoch. Proc. Appl. 103, 31–55 (2003)

    Article  MathSciNet  Google Scholar 

  22. Yang, X., Zhang, T.S.: Estimates of heat kernels with Neumann boundary conditions. Potential Anal. 38(2), 549–572 (2013)

    Article  MathSciNet  Google Scholar 

  23. Yang, X., Zhang, T.S.: Mixed boundary value problems of semilinear elliptic PDEs and BSDEs with singular coefficients. Stoch. Proc. Appl. 124(7), 2442–2478 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of the second author is supported by National Natural Science Foundation of China (12071341, 11401427, 11771329, 11871052). The work of the third author is supported by National Natural Science Foundation of China (12031009, 11701404, 11401108) and Shanghai Science and Technology Commission Grant (14PJ1401500).

Appendix

Appendix

In this section we give the proof of Theorem 1, for which the following estimate is needed.

Lemma 5

Assume that (H1), (H2) and (H4) are satisfied and the coefficient g only depends on (t, x). If u is the solution of PDE (1), then it holds that

$$ \begin{array}{llll} &\displaystyle \sup\limits_{t\in[0,T]}\|u_{t}\|^{2}+{{\int}_{0}^{T}} \|u_{t}\|^{2}_{1} dt\\ \leq &\displaystyle C\Big(\|{\Phi}\|^{2}+{{\int}_{0}^{T}}{\int}_{\partial D}|h_{r}(x,0)|^{2} d\sigma(x)dr+{{\int}_{0}^{T}}{\int}_{D}|g_{r}(x)|^{2}+|f_{r}(x,0,0)|^{2} dxdr\Big), \end{array} $$
(24)

where the constant C > 0 depends on terminal time T, domain D, Lipschitz constants of f, g, h and boundedness of b.

Proof

By the Lipschitz and integrability conditions, we have

$$ \begin{array}{@{}rcl@{}} \displaystyle \|u_{t}\|^{2}+{{\int}_{t}^{T}} \|\nabla u_{r}\|^{2} dr &=&\displaystyle \|{\Phi}\|^{2}+2{{\int}_{t}^{T}}{\int}_{D} f_{r}(x,u_{r},\nabla u_{r})u_{r}(x)dxdr\\ &\displaystyle &+2{{\int}_{t}^{T}}{\int}_{D} \langle g_{r}(x), \nabla u_{r}(x)\rangle dxdr\\&\displaystyle &+{{\int}_{t}^{T}}{\int}_{\partial D} h_{r}(x,u_{r})u_{r}(x) d\sigma(x)dr\\&&\displaystyle +2{{\int}_{t}^{T}}{\int}_{D} \langle b,\nabla u_{r}\rangle(x) u_{r}(x)dxdr\\ &\leq&\displaystyle \|{\Phi}\|^{2}+(2C+\frac{1}{\epsilon_{2}}+1) {{\int}_{t}^{T}}\|u_{r}\|^{2} dr+C^{2}\epsilon_{2}{{\int}_{t}^{T}} \|\nabla u_{r}\|^{2} dr\\ &&\displaystyle +{{\int}_{t}^{T}}\|f_{r}(0,0)\|^{2} dr+\epsilon_{1}{{\int}_{t}^{T}} \|\nabla u_{r}\|^{2} dr+\frac{1}{\epsilon_{1}}{{\int}_{t}^{T}}\|g_{r}\|^{2} dr\\ &&\displaystyle +\|Tr\|^{2}\epsilon_{3}{{\int}_{t}^{T}} \|u_{r}\|_{1}^{2} dr +{\alpha\|Tr\|^{2}}{{\int}_{t}^{T}} \|u_{r}\|_{1}^{2} dr\\&&\displaystyle +\frac{1}{4\epsilon_{3}}{{\int}_{t}^{T}}{\int}_{\partial D}|h_{r}(x,0)|^{2}dxdr+\frac{1}{\epsilon_{4}}{{\int}_{t}^{T}}\|u_{r}\|^{2} dr\\&&\displaystyle +M^{2}\epsilon_{4} {{\int}_{t}^{T}}\|\nabla u_{r}\|^{2} dr, \end{array} $$

where ∥Tr∥ is the norm of the trace operator Tr and constant \(M=\sup _{x\in D}|b(x)|\).

By further calculation, we obtain

$$ \begin{array}{llll} &\displaystyle \|u_{t}\|^{2}+(1-\epsilon_{1}-C^{2}\epsilon_{2}-\|Tr\|^{2}\epsilon_{3}-\alpha\|Tr\|^{2}-M^{2}\epsilon_{4}){{\int}_{t}^{T}} \|\nabla u_{r}\|^{2} dr\\ \leq&\displaystyle \|{\Phi}\|^{2}+(2C+\frac{1}{\epsilon_{2}}+1+\|Tr\|^{2}\epsilon_{3}+\alpha\|Tr\|^{2}+\frac{1}{\epsilon_{4}}){{\int}_{t}^{T}} \|u_{r}\|^{2} dr\\ &\displaystyle +{{\int}_{t}^{T}}\|f_{r}(0,0)\|^{2} dr+\frac{1}{\epsilon_{1}}{{\int}_{t}^{T}}\|g_{r}\|^{2} dr+\frac{1}{4\epsilon_{3}}{{\int}_{t}^{T}}{\int}_{\partial D}|h_{r}(x,0)|^{2}d\sigma(x) dr. \end{array} $$

We can choose 𝜖1,𝜖2,𝜖3,𝜖4 small enough such that 𝜖1 + C2𝜖2 + ∥Tr2𝜖3 + αTr2 + M2𝜖4 < 1, since αTr2 < 1. Thus by Gronwall’s inequality and a further calculation, we obtain the desired estimate. □

Set the space \( {\mathscr{H}}_{T}:=C([0,T];L^{2}(D))\cap L^{2}([0,T];H^{1}(D))\). We first consider the situation that the coefficients f, g, h only depends on the variables t and x, that is, we suppose that f, g and h are in \(L^{2}([0,T]\times D;\mathbb {R})\), \(L^{2}([0,T]\times D;\mathbb {R}^{N})\) and \(L^{2}([0,T]\times \partial D;\mathbb {R})\), respectively. The following existence and uniqueness result holds.

Proposition 6

There exists a unique weak solution \(u\in {\mathscr{H}}_{T}\) to the linear PDE (23).

Proof

Assume that \(\{g^{n}\}_{n\in \mathbb {N}^{*}}\) is a sequence of smooth functions with \(g^{n}\in C^{\infty }[0,T]\otimes C^{1}({\bar {D}})\), which approaches to g in L2([0,T] × D). It is known that the following Neumann boundary problem without singular coefficient

$$ \left\{ \begin{array}{llll} &\displaystyle \partial_{t} {u^{n}_{t}}+ \frac{1}{2}{\Delta} {u^{n}_{t}}+\langle b,\nabla {u^{n}_{t}}\rangle -\text{div}({g^{n}_{t}})+f_{t}=0 \ \ \quad \text{on}\ \ [0,T]\times D\\ &\displaystyle {u^{n}_{T}}={\Phi} \ \ \quad \text{on}\ \ D\\ &\displaystyle \langle\nabla {u^{n}_{t}}, \vec{n} \rangle=2\langle {g^{n}_{t}}, \vec{n} \rangle-h_{t} \ \ \quad \text{on}\ \ [0,T]\times\partial D, \end{array} \right. $$

has a unique weak solution \(u^{n}\in {\mathscr{H}}_{T}\) [11, Theorem 6.39] satisfying that

$$ \begin{array}{llll} &\displaystyle ({u^{n}_{T}},\phi_{T})-({u^{n}_{0}},\phi_{0})-{{\int}_{0}^{T}}({u^{n}_{t}},\partial_{t}\phi_{t}) dt={{\int}_{0}^{T}}(\nabla {u^{n}_{t}}, \nabla \phi_{t}) dt-{{\int}_{0}^{T}} ({g^{n}_{t}},\nabla\phi_{t}) dt\\&\displaystyle -{{\int}_{0}^{T}}{\int}_{D}\langle b,\nabla {u^{n}_{t}}\rangle(x)\phi_{t}(x) dxdt -{{\int}_{0}^{T}}(f_{t},\phi_{t}) dt-\frac{1}{2}{{\int}_{0}^{T}}{\int}_{\partial D} h_{t}(x)\phi_{t}(x) d\sigma(x) dt. \end{array} $$
(25)

For any positive integers n < m, we have

$$ \left\{ \begin{array}{llll} &\displaystyle \partial_{t} ({u^{n}_{t}}-{u^{m}_{t}})+ \frac{1}{2}{\Delta} ({u^{n}_{t}}-{u^{m}_{t}})+\langle b,\nabla ({u^{n}_{t}}-{u^{m}_{t}})\rangle-\text{div}({g^{n}_{t}}-{g^{m}_{t}})=0 \ \ \text{on}\ \ [0,T]\times D,\\ &\displaystyle {u^{n}_{T}}-{u^{m}_{T}}=0 \ \ \quad \text{on}\ \ D\\ &\displaystyle \langle \nabla ({u^{n}_{t}}-{u^{m}_{t}}), \vec{n}\rangle=2\langle {g^{n}_{t}}-{g^{m}_{t}}, \vec{n}\rangle \ \ \quad \text{on}\ \ [0,T]\times\partial D. \end{array} \right. $$

By the similar proof of Lemma 5, we find that \(\{u^{n}\}_{n\in \mathbb {N}^{*}}\) is a Cauchy sequence in \({\mathscr{H}}_{T}\), of which the limit is denoted by \(u\in {\mathscr{H}}_{T}\). By passing limits on both sides of Eq. 25, we find u is a weak solution of Eq. 23. The uniqueness can be obtained by linearity of the equation and the similar estimate in Lemma 5. □

Proof of Theorem 1

Existence: For simplicity, we set \({g^{n}_{t}}(x)=g_{t}(x,{u^{n}_{t}}(x),\nabla {u^{n}_{t}}(x))\), \({h^{n}_{t}}(x)=h_{t}(x,{u^{n}_{t}}(x))\) and \({f^{n}_{t}}(x)=f_{t}(x,{u^{n}_{t}}(x),\nabla {u^{n}_{t}}(x))\). Choosing 𝜃 > 0, we have

$$\begin{array}{llll} &{}\displaystyle \|u^{n+1}_{0}-{u^{n}_{0}}\|^{2}+{{\int}_{0}^{T}} e^{\theta s}\|\nabla(u^{n+1}_{s}-{u^{n}_{s}})\|^{2}ds=-\theta {{\int}_{0}^{T}} e^{\theta s}\|u^{n+1}_{s}-{u^{n}_{s}}\|^{2}ds\\& +\displaystyle 2{{\int}_{0}^{T}}{\int}_{D} e^{\theta s}\langle b,\nabla (u^{n+1}_{s}-{u^{n}_{s}})\rangle(x)(u^{n+1}_{s}(x)-{u^{n}_{s}}(x))dxds\\& +\displaystyle 2{{\int}_{0}^{T}}e^{\theta s}({f^{n}_{s}}-f^{n-1}_{s}, u^{n+1}_{s}-{u^{n}_{s}})ds \\&\displaystyle +2{{\int}_{0}^{T}} {\int}_{D} e^{\theta s}\langle {g_{s}^{n}}-g_{s}^{n-1},\nabla(u^{n+1}_{s}-{u^{n}_{s}})\rangle dxds\\ &\displaystyle +{{\int}_{0}^{T}} {\int}_{\partial D}e^{\theta s}({h_{s}^{n}}-h_{s}^{n-1})(u^{n+1}_{s}-{u^{n}_{s}})d\sigma(x)ds. \end{array} $$

By using Lipschitz conditions on the coefficients and Cauchy-Schwarz inequality, we have the following estimates:

$$\begin{array}{llll} &\displaystyle 2{{\int}_{0}^{T}} {\int}_{D} e^{\theta s}\langle {g_{s}^{n}}-g_{s}^{n-1},\nabla(u^{n+1}_{s}-{u^{n}_{s}})\rangle dxds\\ \leq&\displaystyle 2{{\int}_{0}^{T}}e^{\theta s}\left( \beta\|{u^{n}_{s}}-u^{n-1}_{s}\|+\gamma\|\nabla ({u^{n}_{s}}-u^{n-1}_{s})\|\right) \|\nabla(u^{n+1}_{s}-{u^{n}_{s}})\| ds\\ \leq&\displaystyle \beta \epsilon {{\int}_{0}^{T}} e^{\theta s}\|\nabla(u^{n+1}_{s}-{u^{n}_{s}})\|^{2} ds +\frac{\beta}{\epsilon}{{\int}_{0}^{T}} e^{\theta s}\|{u^{n}_{s}}-u^{n-1}_{s}\|^{2} ds\\&\displaystyle +{\gamma{\int}_{0}^{T}} e^{\theta s}\|\nabla({u_{s}^{n}}-u_{s}^{n-1})\|^{2}ds +{\gamma{\int}_{0}^{T}} e^{\theta s}\|\nabla(u_{s}^{n+1}-{u_{s}^{n}})\|^{2}ds \end{array}$$

and

$$\begin{array}{llll} &\displaystyle 2{{\int}_{0}^{T}}{\int}_{D} e^{\theta s}\langle b,\nabla (u^{n+1}_{s}-{u^{n}_{s}})\rangle(x)(u^{n+1}_{s}(x)-{u^{n}_{s}}(x))dxds\\ \leq&\displaystyle \frac{1}{\epsilon}{{\int}_{0}^{T}} e^{\theta s}\|u^{n+1}_{s}-{u^{n}_{s}}\|^{2}ds+M^{2}{\epsilon{\int}_{0}^{T}}e^{\theta s}\|\nabla (u^{n+1}_{s}-{u^{n}_{s}})\|^{2}ds \end{array}$$

and

$$\begin{array}{llll} &\displaystyle 2{{\int}_{0}^{T}}e^{\theta s}({f^{n}_{s}}-f^{n-1}_{s}, u^{n+1}_{s}-{u^{n}_{s}})ds\\ \leq&\displaystyle \frac{1}{\epsilon}{{\int}_{0}^{T}} e^{\theta s}\|u^{n+1}_{s}-{u^{n}_{s}}\|^{2}ds+C^{2}{\epsilon{\int}_{0}^{T}} e^{\theta s}\|{u^{n}_{s}}-u^{n-1}_{s}\|^{2}_{1} ds \end{array}$$

and

$$\begin{array}{llll} &\displaystyle {{\int}_{0}^{T}} {\int}_{\partial D} e^{\theta s}({h_{s}^{n}}-h_{s}^{n-1})(u^{n+1}_{s}-{u^{n}_{s}})d\sigma(x)ds\\ \leq&\displaystyle \frac{1}{2}\alpha\|Tr\|^{2} {{\int}_{0}^{T}} e^{\theta s}\|u^{n+1}_{s}-{u^{n}_{s}}\|_{1}^{2} ds+\frac{1}{2}\alpha\|Tr\|^{2} {{\int}_{0}^{T}} e^{\theta s}\|{u^{n}_{s}}-u^{n-1}_{s}\|_{1}^{2} ds. \end{array}$$

Therefore, it follows that

$$\begin{array}{llll} &\displaystyle (\theta-\frac{2}{\epsilon}-\frac{1}{2}\alpha\|Tr\|^{2}){{\int}_{0}^{T}} e^{\theta s}\|u^{n+1}_{s}-{u^{n}_{s}}\|^{2}ds \\&\displaystyle \qquad\quad+(1-\beta\epsilon-\gamma-M^{2}\epsilon-\frac{1}{2}\alpha\|Tr\|^{2}){{\int}_{0}^{T}} e^{\theta s}\|\nabla (u^{n+1}_{s}-{u^{n}_{s}})\|^{2}ds\\ \leq&\displaystyle (C^{2}\epsilon+\frac{\beta}{\epsilon}+\frac{1}{2}\alpha\|Tr\|^{2}){{\int}_{0}^{T}} e^{\theta s}\|{u^{n}_{s}}-u^{n-1}_{s}\|^{2}ds \\&\displaystyle \qquad\quad+(C^{2}\epsilon+\gamma+\frac{1}{2}\alpha\|Tr\|^{2}){{\int}_{0}^{T}} e^{\theta s}\|\nabla({u^{n}_{s}}-u^{n-1}_{s})\|^{2}ds. \end{array}$$

We choose 𝜖 small enough and then 𝜃 such that

$$C^{2}\epsilon+\gamma+\frac{1}{2}\alpha\|Tr\|^{2}< 1-\beta\epsilon-\gamma-M^{2}\epsilon-\frac{1}{2}\alpha\|Tr\|^{2}$$

and

$$\frac{\theta-\frac{2}{\epsilon}-\frac{1}{2}\alpha\|Tr\|^{2}}{1-\beta\epsilon-\gamma-M^{2}\epsilon-\frac{1}{2}\alpha\|Tr\|^{2}}=\frac{C^{2}\epsilon+\frac{\beta}{\epsilon}+\frac{1}{2}\alpha\|Tr\|^{2}}{C^{2}\epsilon+\gamma+\frac{1}{2}\alpha\|Tr\|^{2}}.$$

Setting \(\rho =\frac {\theta -\frac {2}{\epsilon }-\frac {1}{2}\alpha \|Tr\|^{2}}{1-\beta \epsilon -\gamma -M^{2}\epsilon -\frac {1}{2}\alpha \|Tr\|^{2}}\), we find that

$$\begin{array}{llll} \|u^{n+1}-u^{n}\|_{\theta,\rho}&\leq\frac{C^{2}\epsilon+\gamma+\frac{1}{2}\alpha\|Tr\|^{2}}{1-\beta\epsilon-\gamma-M^{2}\epsilon-\frac{1}{2}\alpha\|Tr\|^{2}}\|u^{n}-u^{n-1}\|_{\theta,\rho}\\&\leq\cdots\leq\left( \frac{C^{2}\epsilon+\gamma+\frac{1}{2}\alpha\|Tr\|^{2}}{1-\beta\epsilon-\gamma-M^{2}\epsilon-\frac{1}{2}\alpha\|Tr\|^{2}}\right)^{n}\|u^{1}\|_{\theta,\rho} \end{array}$$

with the norm \(\|v\|_{\theta ,\rho }:={{\int \limits }_{0}^{T}}e^{\theta s}(\rho \|v_{s}\|^{2}+\|\nabla v_{s}\|^{2})ds\) for vL2([0,T]; H1(D)).

We have \(\left (\frac {C^{2}\epsilon +\gamma +\frac {1}{2}\alpha \|Tr\|^{2}}{1-\beta \epsilon -\gamma -M^{2}\epsilon -\frac {1}{2}\alpha \|Tr\|^{2}}\right )^{n}\rightarrow 0\), as \(n\rightarrow \infty \). It means that \(\{u^{n}\}_{n}\) is a Cauchy sequence in L2([0,T]; H1(D)), and its limit is denoted by u.

For any test function ϕ, we have

$$ \begin{array}{@{}rcl@{}} ({u^{n}_{T}},\phi_{T})\!-({u^{n}_{0}},\phi_{0})& -&{{\int}_{0}^{T}}({u^{n}_{t}},\partial_{t}\phi_{t}) dt={{\int}_{0}^{T}}(\nabla {u^{n}_{t}},\nabla\phi_{t}) dt-{{\int}_{0}^{T}} (\langle b,\nabla {u^{n}_{t}}\rangle, \phi_{t} ) dt\\ & -&{{\int}_{0}^{T}}\! ({g^{n}_{t}},\nabla\phi_{t}) dt - {{\int}_{0}^{T}}\!({f^{n}_{t}},\phi_{t}) dt - \frac{1}{2}{{\int}_{0}^{T}}\!\!{\int}_{\partial D}\! {h^{n}_{t}}(x)\phi_{t}(x) \sigma(dx)dt. \end{array} $$

Taking limits on both sides of the above equation, we obtain

$$ \begin{array}{@{}rcl@{}} (u_{T},\phi_{T})-(u_{0},\phi_{0})& -&{{\int}_{0}^{T}}(u_{t},\partial_{t}\phi_{t}) dt={{\int}_{0}^{T}}(\nabla u_{t},\nabla\phi_{t}) dt-{{\int}_{0}^{T}} (\langle b,\nabla u_{t}\rangle, \phi_{t} ) dt\\ & -&\!\!{{\int}_{0}^{T}} (g_{t},\nabla\phi_{t}) dt - {{\int}_{0}^{T}}(f_{t},\phi_{t}) dt - \frac{1}{2}{{\int}_{0}^{T}}{\int}_{\partial D} h_{t}(x)\phi_{t}(x) \sigma(dx)dt. \end{array} $$

Hence, we prove u is the weak solution of PDE (1).

Uniqueness: Suppose \(u,\bar u\in L^{2}([0,T];H^{1}(D))\) are two solutions, we have

$$\begin{array}{llll} &\displaystyle \|u_{0}-\bar u_{0}\|^{2}+{{\int}_{0}^{T}} e^{\theta s}\|\nabla(u_{s}-\bar u_{s})\|^{2} ds\\ =&\displaystyle -\theta {{\int}_{0}^{T}} e^{\theta s}\|u_{s}-\bar u_{s}\|^{2} ds +2{{\int}_{0}^{T}}e^{\theta s}(f_{s}(u_{s},\nabla u_{s})-f_{s}(\bar u_{s},\nabla \bar u_{s}), u_{s}-\bar u_{s}) ds\\ &\displaystyle +2{{\int}_{0}^{T}} {\int}_{D} e^{\theta s}\langle g_{s}(x,u_{s},\nabla u_{s})-g_{s}(x,\bar u_{s},\nabla \bar u_{s}),\nabla(u_{s}(x)-\bar u_{s}(x))\rangle dxds\\ &\displaystyle +{{\int}_{0}^{T}} {\int}_{\partial D}e^{\theta s}(h_{s}(x,u)-h_{s}(x,\bar u))(u_{s}(x)-\bar u_{s}(x)) d\sigma(x) ds\\ &\displaystyle +2{{\int}_{0}^{T}}{\int}_{D} e^{\theta s}\langle b,\nabla (u_{s}-\bar{u}_{s})\rangle(x)(u_{s}(x)-\bar{u}_{s}(x)) dxds. \end{array} $$

By the same calculation in the proof of existence, there is a positive constant k < 1, such that

$$ \|u-\bar u\|^{2}_{\theta, \rho}\leq k \|u-\bar u\|^{2}_{\theta, \rho}. $$

Hence, it follows that \(\|u-\bar u\|_{\theta , \rho }=0\), which implies \(u=\bar u\), a.e.. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, C.H., Yang, X. & Zhang, J. Neumann Boundary Problems for Parabolic Partial Differential Equations with Divergence Terms. Potential Anal 56, 723–744 (2022). https://doi.org/10.1007/s11118-021-09902-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-021-09902-7

Keywords

Mathematics Subject Classification (2010)

Navigation