Skip to main content
Log in

Chiral Instability of the Homogeneous State of a Ferromagnetic Film on a Magnetic Substrate

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The conditions of formation of chiral magnetization distributions in the systems ferromagnet/superconductor and ferromagnet/paramagnet are theoretically determined. The formation of chiral states is caused by the magnetostatic interaction in inhomogeneous magnetic systems. The estimates performed demonstrate that the predicted effects can be experimentally observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. K. Everschor-Sitte, J. Masell, R. M. Reeve, and M. Kläui, J. Appl. Phys. 124, 240901 (2018).

    Article  ADS  Google Scholar 

  2. M. Benitez, A. Hrabec, A. Mihai, et al., Nat. Commun. 6, 8957 (2015).

    Article  ADS  Google Scholar 

  3. M. He, L. Peng, Z. Zhu, et al., Appl. Phys. Rev. 111, 202403 (2017).

    ADS  Google Scholar 

  4. S. Zhang, J. Zhang, Y. Wen, et al., Appl. Phys. Lett. 113, 192403 (2018).

    Article  ADS  Google Scholar 

  5. S. A. Meynell, M. N. Wilson, K. L. Krycka, et al., Phys. Rev. B 96, 054402 (2017).

    Article  ADS  Google Scholar 

  6. S. Muhlbauer, D. Honecker, E. A. Perigo, et al., Rev. Mod. Phys. 91, 015004 (2019).

    Article  ADS  Google Scholar 

  7. S. Muhlbauer, B. Binz, F. Jonietz, et al., Science (Washington, DC, U. S.) 323, 915 (2009).

    Article  ADS  Google Scholar 

  8. A. Fert, N. Reyren, and V. Cros, Nat. Rev. Mater. 2, 17031 (2017).

    Article  ADS  Google Scholar 

  9. J.-S. Kim, H.-J. Lee, J.-I. Hong, and C.-Y. You, J. Magn. Magn. Mater. 455, 45 (2018).

    Article  ADS  Google Scholar 

  10. V. G. Bar’yakhtar, V. A. L’vov, and D. A. Yablonskii, JETP Lett. 37, 673 (1983).

    ADS  Google Scholar 

  11. M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).

    Article  ADS  Google Scholar 

  12. A. P. Pyatakov and A. K. Zvezdin, Phys. Usp. 55, 557 (2012).

    Article  ADS  Google Scholar 

  13. I. E. Dzyaloshinskii, J. Phys. Chem. Solids 4, 241 (1958).

    Article  ADS  Google Scholar 

  14. T. Moriya, Phys. Rev. 120, 91 (1964).

    Article  ADS  Google Scholar 

  15. A. Crepieux and C. Lacroix, J. Magn. Magn. Mater. 182, 341 (1998).

    Article  ADS  Google Scholar 

  16. H. Yang, A. Thiaville, S. Rohart, et al., Phys. Rev. Lett. 115, 267210 (2015).

    Article  ADS  Google Scholar 

  17. A. N. Bogdanov and U. K. Rossler, Phys. Rev. Lett. 87, 037203 (2001).

    Article  ADS  Google Scholar 

  18. S. Rohart and A. Thiaville, Phys. Rev. B 88, 184422 (2013).

    Article  ADS  Google Scholar 

  19. H. Yang, A. Thiaville, S. Rohart, A. Fert, and M. Chshiev, Phys. Rev. Lett. 115, 267210 (2015).

    Article  ADS  Google Scholar 

  20. A. Hrabec, N. A. Porter, A. Wells, et al., Phys. Rev. B 90, 020402(R) (2014).

  21. S. Tacchi, R. E. Troncoso, M. Ahlberg, et al., Phys. Rev. Lett. 118, 147201 (2017).

    Article  ADS  Google Scholar 

  22. J. Cho, N.-H. Kim, S. Lee, et al., Nat. Commun. 6, 7635 (2015).

    Article  ADS  Google Scholar 

  23. M. Belmeguenai, J.-P. Adam, Y. Roussignét, et al., Phys. Rev. B 91, 180405(R) (2015).

  24. N. Mikuszeit, S. Meckler, R. Wiesendanger, and R. Miranda, Phys. Rev. B 84, 054404 (2011).

    Article  ADS  Google Scholar 

  25. K. R. Mukhamatchin and A. A. Fraerman, JETP Lett. 93, 716 (2011).

    Article  ADS  Google Scholar 

  26. I. M. Nefedov, A. A. Fraerman, and I. A. Shereshevskii, Phys. Solid State 58, 503 (2016).

    Article  ADS  Google Scholar 

  27. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Fizmatlit, Moscow, 2005; Pergamon, New York, 1984).

  28. V. Grolier, J. Ferré, A. Maziewski, et al., J. Appl. Phys. 73, 5939 (1993).

    Article  ADS  Google Scholar 

  29. C. Chappert and P. Bruno, J. Appl. Phys. 64, 5736 (1988).

    Article  ADS  Google Scholar 

  30. P. F. Carcia, J. Appl. Phys. 63, 5066 (1988).

    Article  ADS  Google Scholar 

  31. V. V. Schmidt, The Physics of Superconductors (Nauka, Moscow, 1982; Springer, Berlin, Heidelberg, 1997).

  32. A. B. Drovosekov, N. M. Kreines, and A. O. Savitskyetal, J. Phys.: Condens. Matter 29, 115802 (2017).

    ADS  Google Scholar 

  33. J.-H. Moon, S.-M. Seo, K.-J. Lee, et al., Phys. Rev. B 88, 184404 (2013).

    Article  ADS  Google Scholar 

  34. A. A. Stashkevich, M. Belmeguenai, Y. Roussigné, et al., Phys. Rev. B 91, 214409 (2015).

    Article  ADS  Google Scholar 

  35. M. Baćani, M. A. Marioni, J. Schwenk, and H. J. Hug, Sci. Rep. 9, 3114 (2019).

    Article  ADS  Google Scholar 

  36. A. Samardak, A. Kolesnikov, and M. Stebliy, Appl. Phys. Lett. 112, 192406 (2018).

    Article  ADS  Google Scholar 

  37. A. G. Temiryazev, M. P. Temiryazeva, A. V. Zdoroveyshchev, et al., Phys. Solid State 60, 2200 (2018).

    Article  ADS  Google Scholar 

  38. L.-C. Peng, Y. Zhang, S.-L. Zuo, et al., Chin. Phys. B 27, 066802 (2018).

    Article  ADS  Google Scholar 

  39. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Rows. Special Functions (Fizmatlit, Moscow, 2003), Vol. 2 [in Russian].

    MATH  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-02-00356) and state contract no. 0035-2019-0022-C-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Mukhamatchin.

Additional information

Translated by K. Shakhlevich

APPENDIX

APPENDIX

After performing Fourier transform, we write the addition to energy (4) that is related to magnetization vector direction fluctuations as

$$\begin{gathered} \Delta E = \frac{V}{2}\sum\limits_{\mathbf{q}}^{} {\{ (\alpha {{q}^{2}} + H){\text{|}}{{M}_{y}}({\mathbf{q}}){{{\text{|}}}^{2}}} \\ + \,(\alpha {{q}^{2}} + H - K){\text{|}}{{M}_{z}}({\mathbf{q}}){{{\text{|}}}^{2}}\} \\ + \frac{V}{2}\sum\limits_{{\mathbf{q}},i,k = y,z}^{} {{{D}_{{ik}}}({\mathbf{q}}){{M}_{i}}({\mathbf{q}}){{M}_{k}}( - {\mathbf{q}}).} \\ \end{gathered} $$
(A.1)

The Fourier transforms of the magnetostatic tensor components are calculated as follows:

$$\begin{gathered} {{D}_{{yy}}}({\mathbf{q}}) = \frac{{q_{y}^{2}}}{h}\int {{{e}^{{ - i{\mathbf{q}} \cdot {\boldsymbol{\rho }}}}}\frac{1}{{\sqrt {{{\rho }^{2}} + {{{(z - z{\kern 1pt} ')}}^{2}}} }}d{\boldsymbol{\rho }}dzdz{\kern 1pt} '} , \\ {{D}_{{zz}}}({\mathbf{q}}) = \frac{2}{h}\int {{{e}^{{ - i{\mathbf{q}} \cdot {\boldsymbol{\rho }}}}}\left\{ {\frac{1}{\rho } - \frac{1}{{\sqrt {{{\rho }^{2}} + {{h}^{2}}} }}} \right\}d{\boldsymbol{\rho }}} . \\ \end{gathered} $$
(A.2)

The integral in Eq. (A.2) is taken over the ferromagnet volume. Note that Dyz(q) = 0 for the off-diagonal component. Using the Bessel function of the first kind

$$\int\limits_0^{2\pi } {{{e}^{{ - iq\rho \cos \phi }}}d\phi = 2\pi {{J}_{0}}(q\rho ),} $$

we can write Eqs. (A.2) as follows

$$\begin{gathered} {{D}_{{yy}}}({\mathbf{q}}) = 2\pi \frac{{q_{y}^{2}}}{h}\int\limits_0^{} {\int\limits_{}^h {\int\limits_0^\infty {\frac{{{{J}_{0}}(q\rho )}}{{\sqrt {{{\rho }^{2}} + {{{(z - z{\kern 1pt} ')}}^{2}}} }}\rho d\rho dzdz{\kern 1pt} '} ,} } \\ {{D}_{{zz}}}({\mathbf{q}}) = \frac{{4\pi }}{h}\int\limits_0^\infty {{{J}_{0}}(q\rho )\left\{ {1 - \frac{\rho }{{\sqrt {{{\rho }^{2}} + {{h}^{2}}} }}} \right\}d\rho .} \\ \end{gathered} $$
(A.3)

After integration with respect to variable ρ in Eq. (A.3), we obtain [39]

$$\begin{gathered} {{D}_{{yy}}}({\mathbf{q}}) = 2\pi \frac{{q_{y}^{2}}}{{qh}}\int\limits_{}^h {\int\limits_0^{} {{{e}^{{ - q|z - z'|}}}dzdz{\kern 1pt} ',} } \\ {{D}_{{zz}}}({\mathbf{q}}) = 4\pi \frac{{1 - {{e}^{{ - qh}}}}}{{qh}}. \\ \end{gathered} $$
(A.4)

The integral in the first equation of (A.4) is taken according to the rule

$$\begin{gathered} \int\limits_{}^h {\int\limits_0^{} {{{e}^{{ - q|z - z'|}}}dzdz{\kern 1pt} '} } \\ = \int\limits_0^h {\left\{ {\int\limits_0^z {{{e}^{{ - q(z - z')}}}dz{\kern 1pt} '\, + \int\limits_z^h {{{e}^{{q(z - z')}}}dz{\kern 1pt} '} } } \right\}} dz \\ = \frac{{2h}}{q}\left( {1 - \frac{{1 - {{e}^{{ - qh}}}}}{{qh}}} \right). \\ \end{gathered} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraerman, A.A., Mukhamatchin, K.R. Chiral Instability of the Homogeneous State of a Ferromagnetic Film on a Magnetic Substrate. J. Exp. Theor. Phys. 131, 963–969 (2020). https://doi.org/10.1134/S1063776120120031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120120031

Navigation