Skip to main content
Log in

Equation of Transport for Infrared Radiation in Dense Molecular Gas

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Equation of transfer of infrared radiation propagating over a flat surface in a dense molecular gas with small temperature gradients is constructed. Interaction of the radiation field with a gas is manifested in radiative transitions between vibrational, rotational, or vibrational-rotational states of molecules. Therefore, the absorption spectrum of a molecular gas includes hundreds of transitions, and the absorption coefficient as a function of the photon frequency has an oscillatory structure with maxima in the centers of corresponding spectral lines and minima between the centers of neighboring lines. Analysis of the radiative transfer equation for specific problems requires knowledge a large number of parameters for the corresponding radiative transitions in molecules that are contained in the HITRAN data bank. Therefore this equation can be considered as addition to data of the HITRAN bank. The peculiarities of application of the infrared radiation transfer equation to certain cases are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. L. M. Biberman, Zh. Eksp. Teor. Fiz. 17, 416 (1947).

    Google Scholar 

  2. T. Holstein, Phys. Rev. 72, 1212 (1947).

    Article  ADS  Google Scholar 

  3. P. M. Morse, Thermal Physics (Benjamin, New York, 1964).

    Google Scholar 

  4. D. Ter Haar and H. Wergeland, Elements of Thermodynamics (Addison-Wesley, Reading, MA, 1967).

    MATH  Google Scholar 

  5. R. Kubo, Thermodynamics (North-Holland, Amsterdam, 1968).

    Google Scholar 

  6. C. Kittel and H. Kroemer, Thermal Physics (Wiley, New York, 1980).

    Google Scholar 

  7. J. B. J. Fourier, Ann. Chem. Phys. 27, 136 (1824).

    Google Scholar 

  8. J. B. J. Fourier, Mem. Acad. R. Sci. 7, 569 (1827).

    Google Scholar 

  9. R. M. Goody, Atmospheric Radiation: Theoretical Basis (Oxford Univ. Press, London, 1964).

    Google Scholar 

  10. R. M. Goody and Y. L. Yung, Principles of Atmospheric Physics and Chemistry (Oxford Univ. Press, New York, 1995).

    Google Scholar 

  11. G. Kirchhoff and R. Bunsen, Ann. Phys. Chem. 109, 275 (1860).

    Article  Google Scholar 

  12. F. Reif, Statistical and Thermal Physics (McGraw-Hill, Boston, 1965).

    Google Scholar 

  13. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).

  14. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1964; Academic, New York, 1966, 1967).

  15. B. M. Smirnov, J. Exp. Theor. Phys. 126, 446 (2018).

    Article  ADS  Google Scholar 

  16. B. M. Smirnov, Transport of Infrared Atmospheric Radiation (de Gruyter, Berlin, 2020).

  17. B. M. Smirnov, J. Phys. D 51, 214004 (2018).

    Article  ADS  Google Scholar 

  18. B. M. Smirnov, Physics of Ionized Gases (Wiley, New York, 2001).

    Book  Google Scholar 

  19. Understanding Climate Change (Natl. Acad. Sci., Washington, 1975).

  20. J. T. Kiehl and K. E. Trenberth, Bull. Am. Meteorol. Soc. 78, 197 (1997).

    Article  ADS  Google Scholar 

  21. K. E. Trenberth, J. T. Fasullo, and J. T. Kiehl, Bull. Am. Meteorol. Soc. 90, 311 (2009).

    Article  ADS  Google Scholar 

  22. U. S. Standard Atmosphere (U. S. Government Printing Office, Washington, 1976).

  23. G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand Reinhold, Princeton, 1945).

    Google Scholar 

  24. M. A. El’yashevich, Molecular Spectroscopy (Fizmatgiz, Moscow, 1963) [in Russian].

    Google Scholar 

  25. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1964; Pergamon, New York, 1977).

  26. L. S. Rothman, I. E. Gordon, Y. Babikov, et al., J. Quant. Spectrosc. Radiat. Transfer 130, 4 (2013).

    Article  ADS  Google Scholar 

  27. I. E. Gordon, L. S. Rothman, C. Hill, et al., J. Quant. Spectrosc. Radiat. Transfer 203, 3 (2017).

    Article  ADS  Google Scholar 

  28. https://www.cfa.harvard.edu/.

  29. http://www.hitran.iao.ru/home.

  30. M. Simeckova, D. Jacquemart, L. S. Rothman, et al., J. Quant. Spectrosc. Radiat. Transfer 98, 130 (2006).

    Article  ADS  Google Scholar 

  31. I. I. Sobelman, Atomic Spectra and Radiative Transitions (Springer, Berlin, 1979).

    Book  Google Scholar 

  32. B. M. Smirnov, High Temp. 57, 573 (2019).

    Article  Google Scholar 

  33. B. M. Smirnov, Europhys. Lett. 114, 24005 (2016).

    Article  ADS  Google Scholar 

  34. Nature (London, U.K.) 501, 297 (2013);

  35. Nature (London, U.K.) 501, 298 (2013);

  36. Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar5/wg1/.

  37. http://unfccc.int/resource/docs/2015/cop21.

  38. B. M. Smirnov, Int. Rev. At. Mol. Phys. 10, 39 (2019).

    Google Scholar 

  39. B. M. Smirnov, J. Atmos. Sci. Res. 2 (4), 21 (2019).

    Google Scholar 

  40. S. Arrhenius, Philos. Mag. 41, 237 (1896).

    Article  Google Scholar 

  41. G. N. Plass, Tellus VIII, 141 (1956).

    Google Scholar 

  42. G. N. Plass and D. I. Fivel, Quant. J. R. Met. Soc. 81, 48 (1956).

    Article  ADS  Google Scholar 

  43. G. Mie, Ann. Phys. 330, 377 (1908).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Smirnov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, B.M. Equation of Transport for Infrared Radiation in Dense Molecular Gas. J. Exp. Theor. Phys. 131, 901–909 (2020). https://doi.org/10.1134/S1063776120110102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120110102

Navigation