Skip to main content
Log in

Modulated and Incommensurate Superstructures of Atomic–Vacancy Ordering in Refractory Transition Metal Carbides

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The formation of partially disordered modifications in refractory nonstoichiometric carbides prone to M6X5-type ordering is considered. In M6X5 superstructures the ray \({\mathbf{k}}_{9}^{{(3)}}\) of the Lifshitz star {k9} with a current parameter μ9 = 1/2 in the disorder–order phase transition channel is replaced by the rays \({\mathbf{k}}_{5}^{{(6)}}\) and \({\mathbf{k}}_{5}^{{(5)}}\) of the non-Lifshitz star {k5} with a variable current parameter 0 < μ5 < 1/2. Depending on the specific value of the index μ5, this replacement leads to various modulated structures that differ by the concentration of vacancies in the defective (\(1\bar {1}1\)) planes of the carbon fcc sublattice and by the modulation period. In the diffraction spectra the positions of the superstructure reflections due to the star {k5} at μ5 ≈ 0.473 correspond to the incommensurate ordered phase experimentally detected in a nonstoichiometric tantalum carbide. The incommensurate phase is close in short-range order in the first coordination sphere to the initial M6X5 superstructures with a reduced long-range order parameter η ≈ 0.6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. I. Gusev, A. A. Rempel, and A. J. Magerl, Disorder and Order in Strongly Nonstoichiometric Compounds. Transition Metal Carbides, Nitrides and Oxides (Springer, Berlin, 2001).

    Book  Google Scholar 

  2. A. I. Gusev, Nonstoichiometry and Chaos, Short-Range and Long-Range Order in Solids (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  3. A. A. Rempel’ and A. I. Gusev, Nonstoichiometry in Solids (Fizmatlit, Moscow, 2018) [in Russian].

    Google Scholar 

  4. V. N. Lipatnikov, W. Lengauer, P. Ettmayer, E. Keil, G. Groboth, and E. Kny, J. Alloys Compd. 261, 192 (1997).

    Article  Google Scholar 

  5. V. N. Lipatnikov, A. I. Gusev, P. Ettmayer, and W. Lengauer, J. Phys.: Condens. Matter 11, 163 (1999).

    ADS  Google Scholar 

  6. B. V. Khaenko, V. V. Kukol’, and L. S. Ershova, Izv. Akad. Nauk SSSR, Neorg. Mater. 25, 263 (1989).

    Google Scholar 

  7. J. D. Venables, D. Kahn, and R. G. Lye, Philos. Mag. 18, 177 (1968).

    Article  ADS  Google Scholar 

  8. J. D. Venables and R. G. Lye, Philos. Mag. 19, 565 (1969).

    Article  ADS  Google Scholar 

  9. J. Billingham, P. S. Bell, and M. H. Lewis, Philos. Mag. 25, 661 (1972).

    Article  ADS  Google Scholar 

  10. J. Billingham, P. S. Bell, and M. H. Lewis, Acta Crystallogr., A 28, 602 (1972).

    Article  ADS  Google Scholar 

  11. R. Kersi and S. Hamar-Thibault, Acta Metall. 36, 149 (1988).

    Article  Google Scholar 

  12. A. I. Gusev and A. A. Rempel’, Sov. Phys. Solid State 26, 2178 (1984).

    Google Scholar 

  13. A. I. Gusev and A. A. Rempel, Phys. Status Solidi A 93, 803 (1986).

    Article  Google Scholar 

  14. A. N. Christensen, Acta Chem. Scand. A 39, 803 (1985).

    Article  Google Scholar 

  15. C. Froidevaux and D. Rossier, J. Phys. Chem. Sol. 28, 1197 (1967).

    Article  ADS  Google Scholar 

  16. A. A. Rempel’ and A. I. Gusev, Sov. Phys. Solid State 25, 1827 (1983).

    Google Scholar 

  17. A. A. Rempel, A. I. Gusev, and M. Yu. Belyaev, J. Phys. C 20, 5655 (1987).

    Article  ADS  Google Scholar 

  18. A. I. Gusev, J. Exp. Theor. Phys. 109, 417 (2009).

    Article  ADS  Google Scholar 

  19. A. I. Gusev and A. A. Rempel, Phys. Status Solidi A 163, 273 (1997).

    Article  ADS  Google Scholar 

  20. A. I. Gusev, Russ. J. Phys. Chem. A 74, 570 (2000).

    Google Scholar 

  21. N. V. Dzhalabadze, B. G. Eristavi, N. I. Maisuradze, and R. Kuteliya, Phys. Met. Metallogr. 86, 59 (1998).

    Google Scholar 

  22. A. I. Gusev, A. A. Rempel’, and V. N. Lipatnikov, Sov. Phys. Solid State 33, 1295 (1991).

    Google Scholar 

  23. A. I. Gusev, A. A. Rempel, and V. N. Lipatnikov, J. Phys.: Condens. Matter 8, 8277 (1996).

    ADS  Google Scholar 

  24. V. N. Lipatnikov and A. A. Rempel, JETP Lett. 81, 326 (2005).

    Article  ADS  Google Scholar 

  25. A. I. Gusev and A. N. Zyryanova, JETP Lett. 69, 324 (1999).

    Article  ADS  Google Scholar 

  26. C. Xie, A. R. Oganov, D. Li, T. T. Debela, N. Liu, D. Dong, and Q. Zeng, Phys. Chem. Chem. Phys. 18, 12299 (2016).

    Article  Google Scholar 

  27. A. R. Oganov and C. W. Glass, Phys. Chem. 124, 244704 (2006).

    Google Scholar 

  28. A. R. Oganov, A. O. Lyakhov, and M. Valle, Acc. Chem. Res. 44, 227 (2011).

    Article  Google Scholar 

  29. A. O. Lyakhov, A. R. Oganov, H. T. Stoke, and Q. Zhu, Acc. Chem. Res. 184, 1172 (2013).

    Google Scholar 

  30. M. G. Kostenko, A. V. Lukoyanov, A. A. Valeeva, and A. I. Gusev, J. Exp. Theor. Phys. 129, 863 (2019).

    Article  ADS  Google Scholar 

  31. Q. Zeng, J. Peng, A. R. Oganov, et al., Phys. Rev. B 88, 214107 (2013).

    Article  ADS  Google Scholar 

  32. A. G. Khachaturyan, Theory of Phase Transformations and the Structure of Solid Solutions (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  33. M. G. Kostenko, A. A. Rempel, S. V. Sharf, and A. V. Lukoyanov, JETP Lett. 97, 616 (2013).

    Article  ADS  Google Scholar 

  34. M. G. Kostenko, A. A. Rempel, S. V. Sharf, and A. V. Lukoyanov, JETP Lett. 102, 85 (2015).

    Article  ADS  Google Scholar 

  35. M. G. Kostenko, A. A. Rempel, S. V. Sharf, and A. V. Lukoyanov, Mendeleev Commun. 27, 147 (2017).

    Article  Google Scholar 

  36. M. G. Kostenko, A. A. Valeeva, and A. A. Rempel, Mendeleev Commun. 22, 245 (2012).

    Article  Google Scholar 

  37. M. G. Kostenko and A. A. Rempel, J. Exp. Theor. Phys. 115, 999 (2012).

    Article  ADS  Google Scholar 

  38. O. Cedillos-Barraza, D. Manara, K. Boboridis, et al., Sci. Rep. 6, 37962 (2016).

    Article  ADS  Google Scholar 

  39. Q-J. Hong and A. van de Walle, Phys. Rev. B 92, 020104(R) (2015).

Download references

ACKNOWLEDGMENTS

We thank A.I. Gusev (Institute of Solid-State Chemistry of the Ural Branch of the Russian Academy of Sciences) and A.A. Rempel (Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences) for the discussion of our results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Kostenko.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostenko, M.G., Sharf, S.V. Modulated and Incommensurate Superstructures of Atomic–Vacancy Ordering in Refractory Transition Metal Carbides. J. Exp. Theor. Phys. 131, 945–950 (2020). https://doi.org/10.1134/S1063776120110047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120110047

Navigation