Skip to main content
Log in

On the Interpretation of the CMS Excess at an Invariant Mass of the Muon Pair of 28 GeV in the Minimal Supersymmetry

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The possibility of interpretation of the excess in the pp → μ+μb\(\bar {b}\) channel observed by the CMS Collaboration (LHC, CERN) at an invariant mass of the muon pair of 28 GeV (\(\sqrt s \) = 8 and 13 TeV) as a signal of one of the Higgs bosons in the minimal supersymmetry has been considered. It has been shown that parametric scenarios with a light pseudoscalar that satisfy the perturbative unitarity conditions in the Higgs sector exist in the regime of large radiative corrections with a light CP-even scalar h corresponding to the observed Higgs boson.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. In the existing literature, the “light CP-odd boson” is called the A boson with a mass from 10 to 250 GeV.

  2. The simulation was performed in the approximations characteristic of the PYTHIA generator, i.e., only doubly resonant diagrams are chosen from the total set of the ppt\(\bar {t}\) diagrams with the subsequent tb, W+, A or \(\bar {t}\)\(\bar {b}\), W, A decay. The total amplitude of, e.g., the gg\(\bar {t}\)bW+A process with gluons in the initial state is described by 11 diagrams with various resonance thresholds, among which two diagrams are doubly resonant. This leads to theoretical uncertainties of the resulting constraint, which are difficult for estimation.

  3. Any theoretical simulation of the signal was not performed in [10]. Within the MSSM with, e.g., the BP1 set of parameters (see Section 3), the cross section for the signal in the leading order (LO) taking into account the kinematic cutoffs used in [10], is 1.4 × 10–3 fb, and the signal/background ratio for the distribution dσ/d\({{m}_{{{{\mu }^{ + }}{{\mu }^{ - }}}}}\) is 1/35, which is much smaller than the signal/background ratio about 0.1–1 in [10].

  4. The numerical bounds on the cross sections for (i) the e+eH1Z process with the further H1b\(\bar {b}\) or H1 → τ+τ decay, (ii) the e+e → (H2H1H1)Z → (b\(\bar {b}\)b\(\bar {b}\))Z process, and (iii) the e+e → (H2H1H1)Z → (τ+ττ+τ)Z, 4) e+eH2H1 process with the subsequent decay into the b\(\bar {b}\), τ+τ states, where H1, H2, and H3 are the neutral Higgs bosons are presented in Appendix B in [13].

  5. The current lower bounds at \(\sqrt s \) = 13 TeV and a luminosity of 137 fb–1 for squark masses are model dependent. Depending on a particular scenario, they are 1190–1630 GeV [55] and can be lower (about 1 TeV) [56]. For this reason and for the analysis of the features of the discussed MSSM regime, we also considered the values MS = 0.6–1 TeV.

  6. See also the remark in Footnote 2 in the Introduction.

  7. At average values of tanβ, τ+ντ was accepted in the discussed analysis as the main mode of the decay of the charge Higgs boson.

  8. In particular, a change in the strong coupling constant gs by 0.1 approximately halves the interaction vertex factor.

REFERENCES

  1. CMS Collab., J. High Energy Phys. 1811, 161 (2018);

    ADS  Google Scholar 

  2. J. High Energy Phys. 1711, 010 (2017).

  3. ATLAS Collab., ATLAS-CONF-2019-036. https://cds.cern.ch/record/2684853.

  4. CMS Collab., Phys. Rev. Lett. 123, 131802 (2019).

    Article  ADS  Google Scholar 

  5. CMS Collab., Phys. Lett. B 798, 134992 (2019).

    Article  Google Scholar 

  6. M. Carena, S. Heinemeyer, O. Stal, et al., Eur. Phys. J. C 73, 2552 (2013).

    Article  ADS  Google Scholar 

  7. A. Djouadi, L. Maiani, A. Polosa, et al., J. High Energy Phys. 1506, 168 (2015).

    Article  ADS  Google Scholar 

  8. CMS Collab., arXiv:1911.03781 [hep-ex].

  9. CMS Collab., J. High Energy Phys. 1905, 210 (2019).

    ADS  Google Scholar 

  10. CMS Collab., J. High Energy Phys. 1711, 010 (2017).

  11. A. Heister, arXiv: 1610.06536 [hep-ex].

  12. S. Hoche, S. Kuttimalai, S. Schumann, et al., Eur. Phys. J. C 75, 135 (2015).

    Article  ADS  Google Scholar 

  13. CompHEP Collab., Nucl. Instrum. Methods Phys. Res., Sect. A 534, 250 (2004);

    Google Scholar 

  14. A. Pukhov, E. Boos, M. Dubinin, et al., arXiv: hep-ph/9908288.

  15. LEP Collab., ALEPH, DELPHI, L3, et al., Eur. Phys. J. C 47, 547 (2006).

    Article  ADS  Google Scholar 

  16. M. Carena, S. Heinemeyer, C. E. M. Wagner, et al., Eur. Phys. J. C 26, 601 (2003).

    Article  ADS  Google Scholar 

  17. E. Akhmetzyanova, M. Dolgopolov, and M. Dubinin, Phys. Part. Nucl. 37, 677 (2006).

    Article  Google Scholar 

  18. C. Beskidt, W. de Boer, and D. I. Kazakov, Phys. Lett. B 782, 69 (2018).

    Article  ADS  Google Scholar 

  19. S. I. Godunov, V. A. Novikov, M. I. Vysotsky, et al., JETP Lett. 109, 358 (2019).

    Article  ADS  Google Scholar 

  20. A. Arhrib, R. Benbrik, W. Klemm, et al., arXiv: 1909.12405 [hep-ph].

  21. E. van Beveren and G. Rupp, arXiv:1811.02274 [hep-ph].

  22. G. Lee and C. Wagner, MhEFT Package (2016). http://gabrlee.com/code.

  23. G. Lee and C. E. M. Wagner, Phys. Rev. D 92, 075032 (2015).

    Article  ADS  Google Scholar 

  24. J. F. Gunion and H. E. Haber, Phys. Rev. D 67, 075019 (2003).

    Article  ADS  Google Scholar 

  25. S. Heinemeyer, W. Hollik, and G. Weiglein, Comput. Phys. Commun. 124, 76 (2000).

    Article  ADS  Google Scholar 

  26. H. Bahl and W. Hollik, Eur. Phys. J. C 76, 499 (2016).

    Article  ADS  Google Scholar 

  27. H. Bahl and W. Hollik, J. High Energy Phys. 1807, 182 (2018).

    Article  ADS  Google Scholar 

  28. M. N. Dubinin and E. Yu. Petrova, Int. J. Mod. Phys. A 33, 1850150 (2018).

    Article  ADS  Google Scholar 

  29. ATLAS Collab., Phys. Lett. B 716, 1 (2012).

    Article  ADS  Google Scholar 

  30. CMS Collab., Phys. Lett. B 716, 30 (2012).

    Article  ADS  Google Scholar 

  31. ATLAS and CMS Collab., J. High Energy Phys. 1608, 045 (2016).

  32. ATLAS and CMS Collab., Phys. Rev. Lett. 114, 191803 (2015).

    Article  ADS  Google Scholar 

  33. J. Brandstetter, arXiv:1801.07926v1 [hep-ex].

  34. M. Malberti, Nuovo Cim. C 40, 182 (2017).

    ADS  Google Scholar 

  35. S. Coleman and E. Weinberg, Phys. Rev. D 7, 1888 (1973).

    Article  ADS  Google Scholar 

  36. H. E. Haber and R. Hempfling, Phys. Rev. D 48, 4280 (1993).

    Article  ADS  Google Scholar 

  37. M. Carena, J. Ellis, A. Pilaftsis, et al., Nucl. Phys. B 586, 92 (2000).

    Article  ADS  Google Scholar 

  38. S. Y. Choi, M. Drees, and J. S. Lee, Phys. Lett. B 481, 57 (2000).

    Article  ADS  Google Scholar 

  39. M. Carena, M. Quiros, and C. E. M. Wagner, Nucl. Phys. B 461, 407 (1996).

    Article  ADS  Google Scholar 

  40. M. Carena, J. R. Espinosa, M. Quiros, et al., Phys. Lett. B 355, 209 (1995).

    Article  ADS  Google Scholar 

  41. E. Akhmetzyanova, M. Dolgopolov, and M. Dubinin, Phys. Rev. D 71, 075008 (2005).

    Article  ADS  Google Scholar 

  42. M. N. Dubinin and E. Yu. Petrova, Yad. Phys. 79, 302 (2016).

    Google Scholar 

  43. M. N. Dubinin and E. Yu. Petrova, Phys. Rev. D 95, 055021 (2017).

    Article  ADS  Google Scholar 

  44. A. Djouadi, Phys. Rep. 459, 1 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  45. H. Haber and G. Kane, Phys. Rep. 117, 75 (1985).

    Article  ADS  Google Scholar 

  46. M. N. Dubinin and E. Yu. Petrova, EPJ Web Conf. 158, 02005 (2017).

    Article  Google Scholar 

  47. M. Misiak and M. Steinhauser, Eur. Phys. J. C 77, 201 (2017).

    Article  ADS  Google Scholar 

  48. Particle Data Group, Chin. Phys. C 40, 100001 (2016).

    Article  ADS  Google Scholar 

  49. B. W. Lee, C. Quigg, and H. B. Thacker, Phys. Rev. D 16, 1519 (1977).

    Article  ADS  Google Scholar 

  50. I. F. Ginzburg and I. P. Ivanov, Phys. Rev. D 72, 115010 (2005).

    Article  ADS  Google Scholar 

  51. A. G. Akeroyd, A. Arhrib, and E. Naimi, Phys. Lett. B 490, 119 (2000).

    Article  ADS  Google Scholar 

  52. M. D. Goodsell and F. Staub, Eur. Phys. J. C 78, 649 (2018);

    Article  ADS  Google Scholar 

  53. M. E. Krauss and F. Staub, Phys. Rev. D 98, 015041 (2018).

    Article  ADS  Google Scholar 

  54. F. Staub, Phys. Lett. B 789, 2013 (2019).

    Article  Google Scholar 

  55. S. Kanemura and K. Yagyu, Phys. Lett. B 751, 289 (2015).

    Article  ADS  Google Scholar 

  56. M. Carena, H. E. Haber, I. Low, et al., Phys. Rev. D 91, 035003 (2015).

    Article  ADS  Google Scholar 

  57. D. Asner et al., in 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Ed. by N. A. Graf, M. E. Peskin, and J. L. Rosner (Minneapolis, 2013), p. 1.

    Google Scholar 

  58. CMS Collab., J. High Energy Phys. 1910, 244 (2019).

    ADS  Google Scholar 

  59. CMS Collab., arXiv:1912.08887 [hep-ex].

  60. G. Lee and C. E. M. Wagner, Phys. Rev. D 92, 075032 (2015).

    Article  ADS  Google Scholar 

  61. E. Bagnaschi, F. Brümmer, W. Buchmüller, et al., J. High Energy Phys. 1603, 158 (2016).

    Article  ADS  Google Scholar 

  62. H. Bahl, S. Liebler, and T. Stefaniak, Eur. Phys. J. C 79, 279 (2019).

    Article  ADS  Google Scholar 

  63. CMS Collab., J. High Energy Phys. 2003, 055 (2020); arXiv: 1911.03781 [hep-ex]; CMS PAS HIG-18-012 (2019).

  64. ATLAS Collab., J. High Energy Phys. 1503, 088 (2015);

  65. Eur. Phys. J. C 73, 2465 (2013).

  66. CMS Collab., J. High Energy Phys. 1511, 018 (2015).

  67. A. Semenov, Nucl. Instrum. Methods Phys. Res., Sect. A 393, 293 (1997);

    Google Scholar 

  68. Comput. Phys. Comm. 115, 124 (1998); arXiv:1005.1909 [hep-ph].

  69. A. L. Kataev and V. T. Kim, Mod. Phys. Lett. A 9, 1309 (1994);

    Article  ADS  Google Scholar 

  70. N. Gray, D. Broadhurst, W. Grafe, et al., Z. Phys. C 48, 673 (1990);

    ADS  Google Scholar 

  71. S. Gorishny, A. L. Kataev, S. Larin, et al., Mod. Phys. Lett. A 5, 2703 (1990).

    Article  ADS  Google Scholar 

  72. A. Djouadi, M. Spira, and P. Zerwas, Phys. Lett. B 264, 440 (1991).

    Article  ADS  Google Scholar 

  73. CMS Collab., J. High Energy Phys. 1711, 047 (2017);

  74. ATLAS Collab., Phys. Rev. D 90, 052004 (2014).

    Article  ADS  Google Scholar 

  75. J. M. Campbell, R. K. Ellis, and C. Williams, J. High Energy Phys. 1404, 060 (2014);

  76. F. Caola and K. Melnikov, Phys. Rev. D 88, 054024 (2013);

    Article  ADS  Google Scholar 

  77. N. Kauer and G. Passarino, J. High Energy Phys. 1208, 116 (2012).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to O. Kodolova, A. Nikitenko, H. Bahl, and G. Weiglein for fruitful discussions.

Funding

This work was supported by the Russian Science Foundation (project no. 16-12-10280).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Fedotova.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinin, M.N., Fedotova, E.Y. On the Interpretation of the CMS Excess at an Invariant Mass of the Muon Pair of 28 GeV in the Minimal Supersymmetry. J. Exp. Theor. Phys. 131, 917–927 (2020). https://doi.org/10.1134/S1063776120120092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120120092

Navigation