Skip to main content
Log in

Synthesis and Characterization of Aa2024-Sio2 Nanocomposites Through the Vortex Method

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

A Correction to this article was published on 23 February 2021

This article has been updated

Abstract

In the present study, AA2024-SiO2np nanocomposites were prepared by the vortex method and effects of SiO2 content on resulting microstructural and mechanical properties were investigated. The results indicate that the addition of 0.5vol% of nanoparticles decreased the size of the dendrite cell intervals by about 16%. The observed mechanical properties exhibited an improvement of about 17, 28, 10, 157, 8 and 13%, in hardness, ultimate tensile strength, yield strength, tensile elongation, flexural and shear strengths, respectively. With more considerable additions of nanoparticles, scanning electron microscopy investigations confirm that there were more significant amounts of nanoparticle agglomerates in the microstructure, which reduced the mechanical properties of 1vol% SiO2np reinforced nanocomposite. The primary strengthening mechanisms evaluated appeared to be the effect of grain refinement (Hall–Petch), Orowan strengthening and the mismatch in coefficient of thermal expansion of the reinforcements and the matrix alloy. Evidence of some agglomerations of nanoparticles was recognized on the tensile fractured surfaces of the nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Change history

References

  1. E.T. Thostenson, C. Li, T.W. Chou, Nanocomposites in context. Compos. Sci. Technol. 65, 491–516 (2005)

    Article  CAS  Google Scholar 

  2. R. Casati, M. Vedani, Metal matrix composites reinforced by nano-particles—a review. Met. 4, 56–83 (2014)

    Google Scholar 

  3. S. Ray, Review of cast metal matrix particulate composite. J. Mater. Sci. 28, 5397–5413 (1993)

    Article  CAS  Google Scholar 

  4. The Composite materials handbook, Vol. 4, Metal matrix composite, ASM International, 2002.

  5. N. Chawala, K.K. Chawla, Metal Matrix Composites, 2nd edn. (Springer, An Oxford-Kobe Materials Text, 2006).

    Google Scholar 

  6. J.B. Ferguson, I. Aguirre, H. Lopez, B.F. Schultz, K. Cho, P.K. Rohatgi, Tensile properties of reactive stir-mixed and squeeze cast Al/CuOnp-based metal matrix nanocomposites. Mater. Sci. Eng. A 611, 326–332 (2014)

    Article  CAS  Google Scholar 

  7. U. Aybarc, O. Ertugrul, M.O. Seydibeyoglu, Effect of Al2O3 particle size on mechanical properties of ultrasonic-assisted stir-casted Al A356 matrix composites. Inter. Metalcast. (2020). https://doi.org/10.1007/s40962-020-00490-7

    Article  Google Scholar 

  8. U. Aybarc, H. Yavuz, D. Dispinar, M.O. Seydibeyoglu et al., The use of stirring methods for the production of sic-reinforced aluminum matrix composite and validation via simulation studies. Inter. Metalcast. 13, 190–200 (2019). https://doi.org/10.1007/s40962-018-0250-3

    Article  CAS  Google Scholar 

  9. P. Ajay Kumar, P. Rohatgi, D. Weiss, 50 years of foundry-produced metal matrix composites and future opportunities. Inter. Metalcast. 14, 291–317 (2020). https://doi.org/10.1007/s40962-019-00375-4

    Article  CAS  Google Scholar 

  10. H. Choi, W. Cho, X.C. Li, Semi-Solid Mixing for Fabrication of A206/Al2O3 Master Nanocomposites, Transactions of the American Foundry Society 121 (2013) 159–164 (AFS library 20130155).

  11. Y. Sun, H. Choi, X.C. Li, Composition Optimization for A206/Al2O3 Nanocomposite, Transactions of the American Foundry Society 121 (2013) 205–215 (AFS library 20130160)

  12. B. Abbasipour, B. Niroumand, S.M. Monirvaghefi, Compocasting of A356-CNT composite. Trans. Nonferr. Met. Soc. China 20, 1561–1566 (2010)

    Article  CAS  Google Scholar 

  13. Y. Pazhouhanfar, B. Eghbali, Microstructural characterization and mechanical properties of TiB2 reinforced Al6061 matrix composites produced using stir casting method. Mater. Sci. Eng. A 710, 172–180 (2018)

    Article  CAS  Google Scholar 

  14. A. Maleki, M. Meratian, B. Niroumand, M. Gupta, Synthesis of in-situ aluminum matrix composite using a new activated powder injection method. Metall. Mater. Trans. A 39, 3034–3039 (2008)

    Article  CAS  Google Scholar 

  15. M. Senemar, A. Maleki, B. Niroumand, R. Allafchian, A novel and facile method for silica nanoparticles synthesis from high temperature vulcanization (HTV) silicon. Metall. Mater. Eng. 22, 1–8 (2017)

    Article  Google Scholar 

  16. M. Borouni, B. Niroumand, A. Maleki, Synthesis and characterization of in-situ magnesium based cast nano composite via nano-SiO2 addition to the melt. Mater. Technol. 51, 945–951 (2017)

    CAS  Google Scholar 

  17. V.S. Ayar, M.P. Sutaria, Development and characterization of in situ AlSi5Cu3/TiB2 composites. Inter. Metalcast. 14, 59–68 (2020). https://doi.org/10.1007/s40962-019-00328-x

    Article  CAS  Google Scholar 

  18. M. Ghahremainian, B. Niroumand, Compocasting of an Al-Si-SiCp composite using powder injection method. Solid State Phenom. 141–143, 175–180 (2008)

    Article  Google Scholar 

  19. S. Amirkhanlou, B. Niroumand, Synthesis and characterization of 356-SiCp composites by stir casting and compocasting methods. Trans. Nonferr. Met. Soc. China 20, 788–793 (2010)

    Article  Google Scholar 

  20. S. Amirkhanlou, B. Niroumand, Development of Al356/SiCp cast composites by injection of SiCp containing composite powders. Mater. Des. 32, 1895–1902 (2011)

    Article  CAS  Google Scholar 

  21. S. Amirkhanlou, B. Niroumand, Effects of reinforcement distribution on low and high temperature tensile properties of Al356/SiCp cast composites produced by a novel reinforcement dispersion technique. Mater. Sci. Eng. A 528, 7186–7195 (2011)

    Article  CAS  Google Scholar 

  22. M. Ghahremanian, B. Niroumand, M. Panjepour, Production of Al-Si-SiCp cast vomposites by injection of low-energy ball-milled Al-SiCp powder into the melt. Met. Mater. Int. 18, 149–156 (2012)

    Article  CAS  Google Scholar 

  23. S. Amirkhanlou, B. Niroumand, Microstructure and mechanical properties of Al356/SiCp cast composites fabricated by a novel technique. J. Mater. Eng. Perform. 22, 85–93 (2013)

    Article  CAS  Google Scholar 

  24. H. Puga, S.D. Tohidi, V.H. Carneiro, J. Meireles, M. Prokic, Ceramic sonotrodes for light alloy melt treatment. Int. J. Metalcast. (2020). https://doi.org/10.1007/s40962-020-00476-5

    Article  Google Scholar 

  25. H. Choi, W. Cho, X.C. Li, D. Hoefert, D. Weiss, Scale-up ultrasonic processing system for batch production of metallic nanocomposites, Trans. Am. Foundry Soc.121 (2013) 145–151 (AFS Library 20130153)

  26. M. Shayan, B. Niroumand, M.R. Toroghinejad, Effect of applied pressure on mechanical properties of squeeze cast Al-MWCNT composites, Materials Science and Technology Conference and Exhibition, MS and T 2012. Pittsburgh, USA 2012, 128–135 (2012)

    Google Scholar 

  27. M. Shayan, B. Niroumand, Synthesis of A356–MWCNT nanocomposites through a novel two stage casting process. Mater. Sci. Eng. A 582, 262–269 (2013)

    Article  CAS  Google Scholar 

  28. M. Azadi, M. Zolfaghari, S. Rezanezhad, M. Azadi, Effects of SiO2 nano-particles on tribological and mechanical properties of aluminum matrix composites by different dispersion methods. Appl. Phys. A 124, 377 (2018)

    Article  CAS  Google Scholar 

  29. H.R. Ezatpour, S.A. Sajjadi, M. Haddad Sabzevar, Y. Huang, Investigation of microstructure and mechanical properties of Al6061-nanocomposite fabricated by stir casting, Mater. Des. 55 (2014) 921–928.

  30. A. Matin, F. Fereshteh Saniee, H.R. Abedi, Microstructure and mechanical properties of Mg/SiC and AZ80/SiC nano-composites fabricated through stir casting method, Mater. Sci. Eng. A 625 (2015) 81–88.

  31. M. Nakai, T. Eto, New aspects of development of high strength aluminum alloys for aerospace applications. Mater. Sci. Eng. A 285, 62–68 (2000)

    Article  Google Scholar 

  32. Z. Zhang, F. Liu, E.H. Han, L. Xu, P.C. Uzoma, Effects of Al2O3 on the microstructures and corrosion behavior of low-pressure cold gas sprayed Al 2024-Al2O3 composite coatings on AA 2024–T3 substrate. Surf. Coat. Technol. 370, 53–68 (2019)

    Article  CAS  Google Scholar 

  33. H. Kaçar, E. Atik, C. Meriç, The effect of precipitation-hardening conditions on wear behaviours at, aluminium wrought alloy. J. Mater. Process. Technol. 142(2003), 762–766 (2003)

    Article  CAS  Google Scholar 

  34. H. Yang, S. Tian, T. Gao, J. Nie, Z. You, G. Liu, H. Wang, X. Liu, High-temperature mechanical properties of 2024 Al matrix nanocomposite reinforced by TiC network architecture. Mater. Sci. Eng. A 763, 138121 (2019)

    Article  CAS  Google Scholar 

  35. W. Hoziefa, S. Toschi, M.M.Z. Ahmed, Al. Morri, A.A. Mahdy, M.M. El-Sayed Seleman, I. El-Mahallawi, L. Ceschini, A. Atlam, Influence of friction stir processing on the microstructure andmechanical properties of a compocast AA2024-Al2O3 nanocomposite, Mater. Des. 106 (2016) 273–284.

  36. M. Yan, Z. Fan, Durability of materials in molten aluminum alloys. J. Mater. Sci. 36, 285–295 (2001)

    Article  CAS  Google Scholar 

  37. M. Shayan, B. Eghbali, B. Niroumand, M. Lashani Zand, Casting and mould design of as cast Al2024 alloy using ProCAST software, in 5th International Conference on Materials Engineering and Metallurgy (2016) Shiraz, Iran.

  38. P.N. Anyalebechi, Effects of Alloying Elements and Solidification Conditions on Secondary Dendrite Arm Spacing in Aluminum Alloys, EPD Congress, , M. E. Schlesinger. TMS (The Minerals, Metals, and Materials Society) 2004, 217–233 (2004)

    Google Scholar 

  39. D.J. Musselwhite, B.C. Wesolowski, The SAGE Encyclopedia of Educational Research, Measurement, and Evaluation, 1st edn. (SAGE Publications Inc, Thousand Oaks, 2018).

    Google Scholar 

  40. P. Stratton, Ellingham diagrams – their use and misuse. Int. Heat Treat. Surf. Eng. 7, 70–73 (2013)

    Article  Google Scholar 

  41. H. Zhu, K. Dong, J. Huang, J. Li, G. Wang, Z. Xie, Reaction mechanism and mechanical properties of an aluminum-based composite fabricated in-situ from Al–SiO2 system, Mater. Chem. Phys. 145 (2044) 334–341.

  42. K. Wang, W. Li, J. Du, L. Yang, P. Tang, Thermal analysis of in-situ Al2O3/SiO2(p)/Al composites fabricated by stir casting process. Thermochim. Acta 641, 29–38 (2016)

    Article  CAS  Google Scholar 

  43. A. Sato, R. Mehrabian, Aluminum matrix composites: fabrication and properties. Metall. Trans. B 7, 443–451 (1976)

    Article  Google Scholar 

  44. Z. Shi, J.M. Yang, J.C. Lee, D. Zhang, H.I. Lee, R. Wu, The interfacial characterization of oxidized SiC(p)/2014 Al composites. Mater. Sci. Eng. A 303, 46–53 (2001)

    Article  Google Scholar 

  45. S. Das, S. Das, K. Das, Abrasive wear of zircon sand and alumina reinforced Al–4.5 wt% Cu alloy matrix composites–A comparative study, Compos. Sci. Technol. 67 (2007) 746–751.

  46. P.K. Rohatgi, B.F. Schultz, A. Daoud, W.W. Zhang, Tribological performance of A206 aluminum alloy containing silica sand particles. Tribol. Int. 43, 455–466 (2010)

    Article  CAS  Google Scholar 

  47. H. Fukunaga, X. Wang, Y. Aramaki, Preparation of intermetallic compound matrix composites by reaction squeeze casting. J. Mater. Sci. Lett. 9, 23–25 (1990)

    Google Scholar 

  48. H.X. Peng, D.Z. Wang, L. Geng, C.K. Yao, J.F. Mao, Evaluation of the microstructure of in-situ reaction processed A13Ti-A12O3-Al composite. Scr. Mater. 37, 199–204 (1997)

    Article  CAS  Google Scholar 

  49. A. Maleki, M. Panjepour, B. Niroumand, M. Meratian, Mechanism of zinc oxide–aluminum aluminothermic reaction. J. Mater. Sci. 45, 5574–5580 (2010)

    Article  CAS  Google Scholar 

  50. A. Maleki, N. Hosseini, B. Niroumand, A review on aluminothermic reaction of Al/ZnO system. Ceram. Int. 44, 10–23 (2018)

    Article  CAS  Google Scholar 

  51. A.D. Moghadam, B.F. Schultz, J.B. Ferguson, E. Omrani, P.K. Rohatgi, N. Gupta, Functional metal matrix composites: self-lubricating, self-healing, and nanocomposites-an outlook, JOM 66 (2044) 872–881.

  52. A.D. Moghadam, J.B. Ferguson, B.F. Schultz, P.K. Rohatgi, In-situ reactions in hybrid aluminum alloy composites during incorporating silica sand in aluminum alloy melts. Mater. Sci. 3, 954–964 (2016)

    CAS  Google Scholar 

  53. M. Kok, Production and mechanical properties of Al2O3 particle-reinforced, aluminium alloy composites. J. Mater. Process. Technol. 161(2005), 381–387 (2024)

    Google Scholar 

  54. M. Shayan, B. Eghbali, B. Niroumand, Synthesis of AA2024-(SiO2np+TiO2np) hybrid nanocomposite via stir casting method. Mater. Sci. Eng. A 756, 484–491 (2019)

    Article  CAS  Google Scholar 

  55. E. Guo, S. Shuai, D. Kazantsev, S. Karagadde, A.B. Phillion, T. Jing, W. Li, P.D. Lee, The influence of nanoparticles on dendritic grain growth in Mg alloys. Acta Mater. 152, 127–137 (2018)

    Article  CAS  Google Scholar 

  56. S.S. Wu, H. Nakae, Nucleation effect of alumina in Al-Si/Al2O3composites. J. Mater. Sci. Lett. 18, 321–323 (1999)

    Article  CAS  Google Scholar 

  57. Y. Wang, H.T. Li, Z. Fan, Oxidation of aluminium alloy melts and inoculation by oxide particles. Trans. Indian. Inst. Met. 65, 653–661 (2012)

    Article  CAS  Google Scholar 

  58. R.S. Rana, R. Purohit, S. Soni, S. Das, Comparison of mechanical properties and microstructure of aluminum alloy micron and nano SiC composites fabricated by ultrasonic vibration. Int. J. Adv. Eng. Res. Develop. 1, 135–146 (2014)

    Google Scholar 

  59. W. Wang, H. Wang, Y. Liu, H. Nie, W. Cheng, Effect of SiC nanoparticles addition on the microstructures and mechanical properties of ECAPed Mg9Al–1Si alloy. J. Mater. Res. 32, 615–623 (2017)

    Article  CAS  Google Scholar 

  60. Z. Wang, Y. Kang, W. Dong, H. Zhao, J. Liu, Y. Xu, Study of grain refinement and SiC nanoparticle reinforced magnesium alloys. Mater. Sci. Forum 488–489, 889–892 (2005)

    Article  Google Scholar 

  61. K. Borodianskiy, A. Kossenko, M. Zinigrad, Improvement of the mechanical properties of Al-Si alloys by TiC nanoparticles. Metall. Mater. Trans. A 44, 4948–4953 (2013)

    Article  CAS  Google Scholar 

  62. A. Plessis, I. Yadroitsava, I. Yadroitsev, Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights. Mater. Des. 187, 108385 (2020)

    Article  CAS  Google Scholar 

  63. A. Sanaty-Zadeh, Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect. Mater. Sci. Eng. A 531, 112–118 (2012)

    Article  CAS  Google Scholar 

  64. S. Amirkhanlou, M. Rahimian, M. Ketabchi, N. Parvin, P. Yaghinali, F. Carreño, Strengthening mechanisms in nanostructured Al/SiCp composite manufactured by accumulative press bonding. Metall. Mater. Trans. A 47, 5136–5145 (2016)

    Article  CAS  Google Scholar 

  65. K. Ma, E.J. Lavernia, J.M. Schoenung, Particulate reinforced aluminum alloy matrix composites - A review on the effect of microconstituents. Rev. Adv. Mater. Sci. 48, 91–104 (2017)

    CAS  Google Scholar 

  66. U.K. Kainer, Metal Matrix Composites Custom-Made Materials for Automotiveand Aerospace Engineering, 1st edn. (Willey-vch Verlag Gmbh and Co., Kga, Weinheim, 2006).

    Book  Google Scholar 

  67. ASM Handbook, Volume 2: Properties and selection: Nonferrous alloys and special-purpose materials, properties of wrought aluminum and aluminum alloys, ASM International, (1990) 62–122.

  68. S. Amirkhanlou, R. Jamaati, B. Niroumand, M.R. Toroghinejad, Fabrication and characterization of Al/SiCp composites by CAR process. Mater. Sci. Eng. A 528, 4462–4467 (2011)

    Article  CAS  Google Scholar 

  69. R. Jamaati, S. Amirkhanlou, M.R. Toroghinejad, B. Niroumand, Effect of particle size on microstructure and mechanical properties of composites produced by ARB process. Mater. Sci. Eng. A 528, 2143–2148 (2011)

    Article  CAS  Google Scholar 

  70. S. Amirkhanlou, M. Rezaei, B. Niroumand, M.R. Toroghinejad, Refinement of microstructure and improvement of mechanical properties of Al/Al2O3 composite by accumulative roll bonding process. Mater. Sci. Eng. A 528, 2548–2553 (2011)

    Article  CAS  Google Scholar 

  71. M. Shayan, B. Eghbali, B. Niroumand, The role of accumulative roll bonding after stir casting process to fabricate high-strength and nanostructured AA2024-(SiO2+TiO2) hybrid nanocomposite. J. Alloys Compd. 845, 156281 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Shayan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article has been revised: Beitallah Eghbali’s family name was corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shayan, M., Eghbali, B. & Niroumand, B. Synthesis and Characterization of Aa2024-Sio2 Nanocomposites Through the Vortex Method. Inter Metalcast 15, 1427–1440 (2021). https://doi.org/10.1007/s40962-021-00574-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00574-y

Keywords

Navigation