Skip to main content

Advertisement

Log in

Microbially Mediated Remediation of Contaminated Sediments by Heavy Metals: a Critical Review

  • Sediment Pollution (G Toor and L Nghiem, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Sediment contamination by heavy metals has been known as one of the most serious environmental challenges due to the abundance, persistence, toxicity, and subsequent bioaccumulation of heavy metals. Microbial activities play a significant role in the fate and transport and mobility of heavy metals in the interface of sediment-water, which affect the distribution of heavy metals along the food chain. However, a comprehensive review elucidating the roles and mechanisms of microbial-driven remediation of heavy metals in sediments is not available.

Recent Findings

This review discusses various microbial processes affecting the transformation and speciation of heavy metals in sediments. It also emphasizes the importance of modern biotechnologies and approaches in improving the ability of microbial activities to effectively transform heavy metals at a faster rate and highlights recent advances in microorganism-mediated remediation of heavy metals in sediments as well as future prospects and limitations.

Summary

The current bioremediation practice using diverse microbial processes is promising for sustainable removal of heavy metals from sediments. However, additional research applying advanced biotechnology such as omics-based molecular tools and nanotechnology would further enhance the potential of microbes to remediate heavy metal–contaminated sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cheng Y, Zhang R, Li T, Zhang F, Russell J, Guan M, et al. Spatial distributions and sources of heavy metals in sediments of the Changjiang Estuary and its adjacent coastal areas based on mercury, lead and strontium isotopic compositions. Catena. 2019;174:154–63.

    Article  CAS  Google Scholar 

  2. Huang F, Xu Y, Tan Z, Wu Z, Xu H, Shen L, et al. Assessment of pollutions and identification of sources of heavy metals in sediments from west coast of Shenzhen, China. Environ Sci Pollut Res. 2018;25(4):3647–56.

    Article  CAS  Google Scholar 

  3. Liu Q, Jia Z, Li S, Hu J. Assessment of heavy metal pollution, distribution and quantitative source apportionment in surface sediments along a partially mixed estuary (Modaomen, China). Chemosphere. 2019;225:829–38.

    Article  CAS  Google Scholar 

  4. Sibal LN, Espino MPB. Heavy metals in lake water: a review on occurrence and analytical determination. Int J Environ Anal Chem. 2018;98(6):536–54.

    Article  CAS  Google Scholar 

  5. Zhang M, He P, Qiao G, Huang J, Yuan X, Li Q. Heavy metal contamination assessment of surface sediments of the Subei Shoal, China: spatial distribution, source apportionment and ecological risk. Chemosphere. 2019;223:211–22.

    Article  CAS  Google Scholar 

  6. Zhao G, Lu Q, Ye S, Yuan H, Ding X, Wang J. Assessment of heavy metal contamination in surface sediments of the west Guangdong coastal region, China. Mar Pollut Bull. 2016;108(1–2):268–74.

    Article  CAS  Google Scholar 

  7. Ma T, Sheng Y, Meng Y, Sun J. Multistage remediation of heavy metal contaminated river sediments in a mining region based on particle size. Chemosphere. 2019;225:83–92.

    Article  CAS  Google Scholar 

  8. Atoufi HD, Lampert DJ. Impacts of oil and gas production on contaminant levels in sediments. Curr Pollut Rep. 2020;6:43–53.

  9. Diarra I, Prasad S. The current state of heavy metal pollution in Pacific Island countries: a review. Appl Spectrosc Rev. 2021;56(1):27–51.

    Article  CAS  Google Scholar 

  10. Xu Z, Mi W, Mi N, Fan X, Zhou Y, Tian Y. Characteristics and sources of heavy metal pollution in desert steppe soil related to transportation and industrial activities. Environ Sci Pollut Res. 2020;27(31):38835–48.

    Article  CAS  Google Scholar 

  11. Ahmed I, Mostefa B, Bernard A, Olivier R. Levels and ecological risk assessment of heavy metals in surface sediments of fishing grounds along Algerian coast. Mar Pollut Bull. 2018;136:322–33.

    Article  CAS  Google Scholar 

  12. Xu R, Chen M, Fang T, Chen J. A new method for extraction and heavy metals removal of abalone visceral polysaccharide. J Food Process Preserv. 2017;41(4):e13023.

    Article  Google Scholar 

  13. Karbassi A, Heidari M. An investigation on role of salinity, pH and DO on heavy metals elimination throughout estuarial mixture. 2015.

    Google Scholar 

  14. Samani AV, Karbassi A, Fakhraee M, Heidari M, Vaezi A, Valikhani Z. Effect of dissolved organic carbon and salinity on flocculation process of heavy metals during mixing of the Navrud River water with Caspian seawater. Desalin Water Treat. 2015;55(4):926–34.

    Article  CAS  Google Scholar 

  15. •• Akcil A, Erust C, Ozdemiroglu S, Fonti V, Beolchini F. A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. J Clean Prod. 2015;86:24–36 This review provides a comprehensive overview on the chemical and biotechnological approaches for the remediation of contaminated sediments and the comparison on their applications, limitations, and future directions.

    Article  CAS  Google Scholar 

  16. Zhang C, Yu Z-G, Zeng G-M, Jiang M, Yang Z-Z, Cui F, et al. Effects of sediment geochemical properties on heavy metal bioavailability. Environ Int. 2014;73:270–81.

    Article  CAS  Google Scholar 

  17. Lores EM, Pennock JR. The effect of salinity on binding of Cd, Cr, Cu and Zn to dissolved organic matter. Chemosphere. 1998;37(5):861–74.

    Article  CAS  Google Scholar 

  18. EPA US. National Primary Drinking Water Regulations. 2018.

    Google Scholar 

  19. He Y, Men B, Yang X, Li Y, Xu H, Wang D. Investigation of heavy metals release from sediment with bioturbation/bioirrigation. Chemosphere. 2017;184:235–43.

    Article  CAS  Google Scholar 

  20. •• Pratush A, Kumar A, Hu Z. Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: a review. Int Microbiol. 2018;21(3):97–106 This review offers a comprehensive discussion of the adverse effects of four heavy metals (arsenic, lead, mercury, and chromium) on environmental and public health, and valuable insights into the future application of microorganisms/genetically engineered microorganisms for the bioremediation of heavy metals.

    Article  CAS  Google Scholar 

  21. Igiri BE, Okoduwa SI, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IK. Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol. 2018;2018:1–16.

    Article  Google Scholar 

  22. Yin H, Niu J, Ren Y, Cong J, Zhang X, Fan F, et al. An integrated insight into the response of sedimentary microbial communities to heavy metal contamination. Sci Rep. 2015;5:14266.

    Article  CAS  Google Scholar 

  23. Jaiswal D, Pandey J. Impact of heavy metal on activity of some microbial enzymes in the riverbed sediments: ecotoxicological implications in the Ganga River (India). Ecotoxicol Environ Saf. 2018;150:104–15.

    Article  CAS  Google Scholar 

  24. Waldron PJ, Wu L, Nostrand JDV, Schadt CW, He Z, Watson DB, et al. Functional gene array-based analysis of microbial community structure in groundwaters with a gradient of contaminant levels. Environ Sci Technol. 2009;43(10):3529–34.

    Article  CAS  Google Scholar 

  25. Kang S, Van Nostrand JD, Gough HL, He Z, Hazen TC, Stahl DA, et al. Functional gene array–based analysis of microbial communities in heavy metals-contaminated lake sediments. FEMS Microbiol Ecol. 2013;86(2):200–14.

    Article  CAS  Google Scholar 

  26. Fernández-Cadena J, Ruíz-Fernández P, Fernández-Ronquillo T, Díez B, Trefault N, Andrade S, et al. Detection of sentinel bacteria in mangrove sediments contaminated with heavy metals. Mar Pollut Bull. 2020;150:110701.

    Article  Google Scholar 

  27. Singh A, Prasad S. Remediation of heavy metal contaminated ecosystem: an overview on technology advancement. Int J Environ Sci Technol. 2015;12(1):353–66.

    Article  CAS  Google Scholar 

  28. • Peng W, Li X, Xiao S, Fan W. Review of remediation technologies for sediments contaminated by heavy metals. J Soils Sediments. 2018;18(4):1701–19 The review offers a detailed summarization of remediation methods and influencing factors for heavy metals contaminated sediments, including physical-chemical, biological and combined approaches.

    Article  CAS  Google Scholar 

  29. Kapahi M, Sachdeva S. Bioremediation options for heavy metal pollution. J Health Pollut. 2019;9(24):191203.

    Article  Google Scholar 

  30. Azubuike CC, Chikere CB, Okpokwasili GC. Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol. 2016;32(11):180.

    Article  Google Scholar 

  31. •• Rahman Z, Singh VP. Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges. Environ Sci Pollut Res Int. 2020;27(22):27563–81 This paper offers a comprehensive review on the bioremediation of toxic heavy metals through a variety of biological processes utilizing the interactions of heavy metal and microbes during in situ and ex situ applications.

  32. Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, et al. Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability. 2015;7(2):2189–212.

    Article  Google Scholar 

  33. Verma S, Kuila A. Bioremediation of heavy metals by microbial process. Environ Technol Innov. 2019;14:100369.

    Article  Google Scholar 

  34. •• Lin Z, Li J, Luan Y, Dai W. Application of algae for heavy metal adsorption: A 20-year meta-analysis. Ecotoxicol Environ Saf. 2020;190:110089 This article presents a thorough, up-to-date 20-year meta-analysis for algal biomass as a biosorbent for the biosorption of heavy metals.

    Article  CAS  Google Scholar 

  35. • Awa SH, Hadibarata T. Removal of heavy metals in contaminated soil by phytoremediation mechanism: a review. Water Air Soil Pollut. 2020;231(2):47 This review article provides a comprehensive discussion on the phytoremediation techniques and mechanism for the removal of heavy metals in contaminated soil.

  36. Ali H, Khan E, Sajad MA. Phytoremediation of heavy metals—concepts and applications. Chemosphere. 2013;91(7):869–81.

    Article  CAS  Google Scholar 

  37. Ojuederie OB, Babalola OO. Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health. 2017;14(12):1504.

    Article  Google Scholar 

  38. • de Alencar FLS, Navoni JA, Do Amaral VS. The use of bacterial bioremediation of metals in aquatic environments in the twenty-first century: a systematic review. Environ Sci Pollut Res. 2017;24(20):16545–59 The article summarizes bacterial bioremediation of metals in aquatic ecosystems.

  39. Ahemad M. Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arab J Chem. 2019;12(7):1365–77.

    Article  CAS  Google Scholar 

  40. Siddiquee S, Rovina K, Azad SA, Naher L, Suryani S, Chaikaew P. Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review. J Microb Biochem Technol. 2015;7(6):384–95.

    Article  CAS  Google Scholar 

  41. Jing R, Kjellerup BV. Biogeochemical cycling of metals impacting by microbial mobilization and immobilization. J Environ Sci. 2018;66:146–54.

    Article  Google Scholar 

  42. • Jin Y, Luan Y, Ning Y, Wang L. Effects and mechanisms of microbial remediation of heavy metals in soil: a critical review. Appl Sci. 2018;8(8):1336 The review provides a detailed discussion on the effects and accumulation mechanisms involved in the microbial remediation of heavy metals in soil, especially the factors influencing the biosorption of heavy metals.

  43. Vera M, Schippers A, Sand W. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A. Appl Microbiol Biotechnol. 2013;97(17):7529–41.

    Article  CAS  Google Scholar 

  44. Bertrand J-C, Caumette P, Lebaron P, Matheron R, Normand P, Sime-Ngando T. Environmental microbiology: fundamentals and applications: Springer; 2015; pp. 3–7.

  45. Xin B, Zhang D, Zhang X, Xia Y, Wu F, Chen S, et al. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria. Bioresour Technol. 2009;100(24):6163–9.

    Article  CAS  Google Scholar 

  46. Zeng X, Wei S, Sun L, Jacques DA, Tang J, Lian M, et al. Bioleaching of heavy metals from contaminated sediments by the Aspergillus niger strain SY1. J Soils Sediments. 2015;15(4):1029–38.

    Article  CAS  Google Scholar 

  47. Štyriaková I, Štyriak I, Balestrazzi A, Calvio C, Faè M, Štyriaková D. Metal leaching and reductive dissolution of iron from contaminated soil and sediment samples by indigenous bacteria and Bacillus isolates. Soil Sediment Contam Int J. 2016;25(5):519–35.

    Article  Google Scholar 

  48. Guven DE, Akinci G. Effect of sediment size on bioleaching of heavy metals from contaminated sediments of Izmir Inner Bay. J Environ Sci. 2013;25(9):1784–94.

    Article  CAS  Google Scholar 

  49. Shekhar S, Sundaramanickam A, Balasubramanian T. Biosurfactant producing microbes and their potential applications: a review. Crit Rev Environ Sci Technol. 2015;45(14):1522–54.

    Article  CAS  Google Scholar 

  50. Yang Z, Zhang Z, Chai L, Wang Y, Liu Y, Xiao R. Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90. J Hazard Mater. 2016;301:145–52.

    Article  CAS  Google Scholar 

  51. Sun W, Zhu B, Yang F, Dai M, Sehar S, Peng C, et al. Optimization of biosurfactant production from Pseudomonas sp. CQ2 and its application for remediation of heavy metal contaminated soil. Chemosphere. 2020;265:129090.

    Article  Google Scholar 

  52. Chen W, Qu Y, Xu Z, He F, Chen Z, Huang S, et al. Heavy metal (Cu, Cd, Pb, Cr) washing from river sediment using biosurfactant rhamnolipid. Environ Sci Pollut Res. 2017;24(19):16344–50.

    Article  CAS  Google Scholar 

  53. Jiang J, Zu Y, Li X, Meng Q, Long X. Recent progress towards industrial rhamnolipids fermentation: process optimization and foam control. Bioresour Technol. 2020;298:122394.

    Article  CAS  Google Scholar 

  54. Mishra A, Malik A. Recent advances in microbial metal bioaccumulation. Crit Rev Environ Sci Technol. 2013;43(11):1162–222.

    Article  CAS  Google Scholar 

  55. Mir-Tutusaus JA, Baccar R, Caminal G, Sarrà M. Can white-rot fungi be a real wastewater treatment alternative for organic micropollutants removal? A review. Water Res. 2018;138:137–51.

    Article  CAS  Google Scholar 

  56. Ahemad M, Kibret M. Recent trends in microbial biosorption of heavy metals: a review. Biochem Mol Biol. 2013;1(1):19–26.

    Article  Google Scholar 

  57. Bano A, Hussain J, Akbar A, Mehmood K, Anwar M, Hasni MS, et al. Biosorption of heavy metals by obligate halophilic fungi. Chemosphere. 2018;199:218–22.

    Article  CAS  Google Scholar 

  58. Moreira V, Lebron Y, Freire S, Santos L, Palladino F, Jacob R. Biosorption of copper ions from aqueous solution using Chlorella pyrenoidosa: optimization, equilibrium and kinetics studies. Microchem J. 2019;145:119–29.

    Article  CAS  Google Scholar 

  59. • Jobby R, Jha P, Yadav AK, Desai N. Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: a comprehensive review. Chemosphere. 2018;207:255–66 This article describes the bioremediation strategies for the removal of chromium by biological agents through biosorption and biotransformation.

  60. Pradhan D, Sukla LB, Mishra BB, Devi N. Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp. J Clean Prod. 2019;209:617–29.

    Article  CAS  Google Scholar 

  61. Hadiani MR, Darani KK, Rahimifard N, Younesi H. Biosorption of low concentration levels of lead (II) and cadmium (II) from aqueous solution by Saccharomyces cerevisiae: response surface methodology. Biocataly Agricult Biotechnol. 2018;15:25–34.

    Article  Google Scholar 

  62. Amini M, Younesi H, Bahramifar N. Biosorption of nickel(II) from aqueous solution by Aspergillus niger: response surface methodology and isotherm study. Chemosphere. 2009;75(11):1483–91.

    Article  CAS  Google Scholar 

  63. Yuan W, Cheng J, Huang H, Xiong S, Gao J, Zhang J, et al. Optimization of cadmium biosorption by Shewanella putrefaciens using a Box-Behnken design. Ecotoxicol Environ Saf. 2019;175:138–47.

    Article  CAS  Google Scholar 

  64. Peng H, Li D, Ye J, Xu H, Xie W, Zhang Y, et al. Biosorption behavior of the Ochrobactrum MT180101 on ionic copper and chelate copper. J Environ Manag. 2019;235:224–30.

    Article  CAS  Google Scholar 

  65. Wang N, Qiu Y, Xiao T, Wang J, Chen Y, Xu X, et al. Comparative studies on Pb(II) biosorption with three spongy microbe-based biosorbents: high performance, selectivity and application. J Hazard Mater. 2019;373:39–49.

    Article  CAS  Google Scholar 

  66. Saranya K, Sundaramanickam A, Shekhar S, Swaminathan S. Biosorption of mercury by Bacillus thuringiensis (CASKS3) isolated from mangrove sediments of southeast coast India. 2019.

    Google Scholar 

  67. Sanjenbam P, Saurav K, Kannabiran K. Biosorption of mercury and lead by aqueous Streptomyces VITSVK9 sp. isolated from marine sediments from the bay of Bengal, India. Front Chem Sci Eng. 2012;6(2):198–202.

    Article  CAS  Google Scholar 

  68. Li D, Xu X, Yu H, Han X. Characterization of Pb2+ biosorption by psychrotrophic strain Pseudomonas sp. I3 isolated from permafrost soil of Mohe wetland in Northeast China. J Environ Manag. 2017;196:8–15.

    Article  CAS  Google Scholar 

  69. Zhou W, Liu D, Kong W, Zhang Y. Bioremoval and recovery of Cd(II) by Pseudoalteromonas sp. SCSE709-6: comparative study on growing and grown cells. Bioresour Technol. 2014;165:145–51.

    Article  CAS  Google Scholar 

  70. Albert Q, Leleyter L, Lemoine M, Heutte N, Rioult J-P, Sage L, et al. Comparison of tolerance and biosorption of three trace metals (Cd, Cu, Pb) by the soil fungus Absidia cylindrospora. Chemosphere. 2018;196:386–92.

    Article  CAS  Google Scholar 

  71. Manguilimotan LC, Bitacura JG. Biosorption of cadmium by filamentous fungi isolated from coastal water and sediments. J Toxicol. 2018;2018:1–6.

    Article  Google Scholar 

  72. Zotti M, Di Piazza S, Roccotiello E, Lucchetti G, Mariotti MG, Marescotti P. Microfungi in highly copper-contaminated soils from an abandoned Fe–Cu sulphide mine: growth responses, tolerance and bioaccumulation. Chemosphere. 2014;117:471–6.

    Article  CAS  Google Scholar 

  73. Noormohamadi HR, Fat'hi MR, Ghaedi M, Ghezelbash GR. Potentiality of white-rot fungi in biosorption of nickel and cadmium: modeling optimization and kinetics study. Chemosphere. 2019;216:124–30.

    Article  CAS  Google Scholar 

  74. Hassan SH, Koutb M, Nafady NA, Hassan EA. Potentiality of Neopestalotiopsis clavispora ASU1 in biosorption of cadmium and zinc. Chemosphere. 2018;202:750–6.

    Article  CAS  Google Scholar 

  75. Shen L, Saky SA, Yang Z, Ho S-H, Chen C, Qin L, et al. The critical utilization of active heterotrophic microalgae for bioremoval of Cr(VI) in organics co-contaminated wastewater. Chemosphere. 2019;228:536–44.

    Article  CAS  Google Scholar 

  76. do Nascimento Júnior WJ, da Silva MGC, Vieira MGA. Competitive biosorption of Cu 2+ and Ag+ ions on brown macro-algae waste: kinetic and ion-exchange studies. Environ Sci Pollut Res. 2019;26(23):23416–28.

    Article  Google Scholar 

  77. Tabaraki R, Heidarizadi E. Simultaneous biosorption of arsenic (III) and arsenic (V): application of multiple response optimizations. Ecotoxicol Environ Saf. 2018;166:35–41.

    Article  CAS  Google Scholar 

  78. Bai J, Yang X, Du R, Chen Y, Wang S, Qiu R. Biosorption mechanisms involved in immobilization of soil Pb by Bacillus subtilis DBM in a multi-metal-contaminated soil. J Environ Sci. 2014;26(10):2056–64.

    Article  Google Scholar 

  79. • Gupta P, Diwan B. Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep. 2017;13:58–71 The article documents the investigation and discussion of the exopolysaccharide (EPS) in bacterial cells that enlightens its potential for heavy metal removal.

  80. Bashir A, Malik LA, Ahad S, Manzoor T, Bhat MA, Dar G, et al. Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ Chem Lett. 2019;17(2):729–54.

    Article  CAS  Google Scholar 

  81. Jee C and Shagufta. Environmental Biotechnology. APH Publishing Corporation, Darya Ganj, New Delhi, India. 2007; pp. 89–140.

  82. Li X, Dai L, Zhang C, Zeng G, Liu Y, Zhou C, et al. Enhanced biological stabilization of heavy metals in sediment using immobilized sulfate reducing bacteria beads with inner cohesive nutrient. J Hazard Mater. 2017;324:340–7.

    Article  CAS  Google Scholar 

  83. Vogel M, Fischer S, Maffert A, Hübner R, Scheinost A, Franzen C, et al. Biotransformation and detoxification of selenite by microbial biogenesis of selenium-sulfur nanoparticles. J Hazard Mater. 2018;344:749–57.

    Article  CAS  Google Scholar 

  84. Z-s N, Pan H, Guo X-P, Lu D-P, Feng J-N, Chen Y-R, et al. Sulphate-reducing bacteria (SRB) in the Yangtze Estuary sediments: abundance, distribution and implications for the bioavailibility of metals. Sci Total Environ. 2018;634:296–304.

    Article  Google Scholar 

  85. Li X-C, Yang Z-z, Zhang C, Wei J-J, Zhang H-Q, Li Z-H, et al. Effects of different crystalline iron oxides on immobilization and bioavailability of Cd in contaminated sediment. Chem Eng J. 2019;373:307–17.

    Article  CAS  Google Scholar 

  86. Kaplan DI, Kukkadapu R, Seaman JC, Arey BW, Dohnalkova AC, Buettner S, et al. Iron mineralogy and uranium-binding environment in the rhizosphere of a wetland soil. Sci Total Environ. 2016;569:53–64.

    Article  Google Scholar 

  87. Wu M, Li Y, Li J, Wang Y, Xu H, Zhao Y. Bioreduction of hexavalent chromium using a novel strain CRB-7 immobilized on multiple materials. J Hazard Mater. 2019;368:412–20.

    Article  CAS  Google Scholar 

  88. Wang S, Zhang B, Diao M, Shi J, Jiang Y, Cheng Y, et al. Enhancement of synchronous bio-reductions of vanadium (V) and chromium (VI) by mixed anaerobic culture. Environ Pollut. 2018;242:249–56.

    Article  CAS  Google Scholar 

  89. He Y, Gong Y, Su Y, Zhang Y, Zhou X. Bioremediation of Cr (VI) contaminated groundwater by Geobacter sulfurreducens: environmental factors and electron transfer flow studies. Chemosphere. 2019;221:793–801.

    Article  CAS  Google Scholar 

  90. Bansal N, Coetzee JJ, Chirwa EM. In situ bioremediation of hexavalent chromium in presence of iron by dried sludge bacteria exposed to high chromium concentration. Ecotoxicol Environ Saf. 2019;172:281–9.

    Article  CAS  Google Scholar 

  91. • Chen S, Lin W, Chien C, Tsang DC, Kao C. Development of a two-stage biotransformation system for mercury-contaminated soil remediation. Chemosphere. 2018;200:266–73 This article describes a viable study to develop two stage treatment systems through integration of chemical extraction and microbial reduction for the remediation of mercury contaminated soil.

  92. Tan Y, Wang Y, Wang Y, Xu D, Huang Y, Wang D, et al. Novel mechanisms of selenate and selenite reduction in the obligate aerobic bacterium Comamonas testosteroni S44. J Hazard Mater. 2018;359:129–38.

    Article  CAS  Google Scholar 

  93. Rinklebe J, Shaheen SM. Redox chemistry of nickel in soils and sediments: a review. Chemosphere. 2017;179:265–78.

    Article  CAS  Google Scholar 

  94. Guo T, Li L, Zhai W, Xu B, Yin X, He Y, et al. Distribution of arsenic and its biotransformation genes in sediments from the East China Sea. Environ Pollut. 2019;253:949–58.

    Article  CAS  Google Scholar 

  95. Lei P, Zhong H, Duan D, Pan K. A review on mercury biogeochemistry in mangrove sediments: hotspots of methylmercury production? Sci Total Environ. 2019;680:140–50.

    Article  CAS  Google Scholar 

  96. Dell’Anno F, Brunet C, van Zyl LJ, Trindade M, Golyshin PN, Dell’Anno A, et al. Degradation of hydrocarbons and heavy metal reduction by marine bacteria in highly contaminated sediments. Microorganisms. 2020;8(9):1402.

    Article  Google Scholar 

  97. Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses MA. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review. Environ Sci Technol. 2013;47(6):2441–56.

    Article  CAS  Google Scholar 

  98. Wang P, Sun G, Jia Y, Meharg AA, Zhu Y. A review on completing arsenic biogeochemical cycle: microbial volatilization of arsines in environment. J Environ Sci. 2014;26(2):371–81.

    Article  Google Scholar 

  99. Hines ME, Poitras EN, Covelli S, Faganeli J, Emili A, Žižek S, et al. Mercury methylation and demethylation in Hg-contaminated lagoon sediments (Marano and Grado Lagoon, Italy). Estuar Coast Shelf Sci. 2012;113:85–95.

    Article  CAS  Google Scholar 

  100. Jia Y, Huang H, Zhong M, Wang F-H, Zhang L-M, Zhu Y-G. Microbial arsenic methylation in soil and rice rhizosphere. Environ Sci Technol. 2013;47(7):3141–8.

    Article  CAS  Google Scholar 

  101. Ruiz ON, Alvarez D, Gonzalez-Ruiz G, Torres C. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase. BMC Biotechnol. 2011;11(1):1–8.

    Article  Google Scholar 

  102. Wang T, Sun H, Mao H, Zhang Y, Wang C, Zhang Z, et al. The immobilization of heavy metals in soil by bioaugmentation of a UV-mutant Bacillus subtilis 38 assisted by NovoGro biostimulation and changes of soil microbial community. J Hazard Mater. 2014;278:483–90.

    Article  CAS  Google Scholar 

  103. Singh R, Kumar A, Kirrolia A, Kumar R, Yadav N, Bishnoi NR, et al. Removal of sulphate, COD and Cr(VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study. Bioresour Technol. 2011;102(2):677–82.

    Article  CAS  Google Scholar 

  104. Kiran GS, Nishanth LA, Priyadharshini S, Anitha K, Selvin J. Effect of Fe nanoparticle on growth and glycolipid biosurfactant production under solid state culture by marine Nocardiopsis sp. MSA13A. BMC Biotechnol. 2014;14(1):1–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjie Sun or Xingmao Ma.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Sediment Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Cheng, K., Sun, K.Y. et al. Microbially Mediated Remediation of Contaminated Sediments by Heavy Metals: a Critical Review. Curr Pollution Rep 7, 201–212 (2021). https://doi.org/10.1007/s40726-021-00175-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-021-00175-7

Keywords

Navigation