Skip to main content
Log in

On the Weak Stationarity Conditions for Mathematical Programs with Cardinality Constraints: A Unified Approach

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In this paper, we study a class of optimization problems, called Mathematical Programs with Cardinality Constraints (MPCaC). This kind of problem is generally difficult to deal with, because it involves a constraint that is not continuous neither convex, but provides sparse solutions. Thereby we reformulate MPCaC in a suitable way, by modeling it as mixed-integer problem and then addressing its continuous counterpart, which will be referred to as relaxed problem. We investigate the relaxed problem by analyzing the classical constraints in two cases: linear and nonlinear. In the linear case, we propose a general approach and present a discussion of the Guignard and Abadie constraint qualifications, proving in this case that every minimizer of the relaxed problem satisfies the Karush–Kuhn–Tucker (KKT) conditions. On the other hand, in the nonlinear case, we show that some standard constraint qualifications may be violated. Therefore, we cannot assert about KKT points. Motivated to find a minimizer for the MPCaC problem, we define new and weaker stationarity conditions, by proposing a unified approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreani, R., Haeser, G., Secchin, L.D., Silva, P.J.S.: New sequential optimality conditions for mathematical problems with complementarity constraints and algorithmic consequences. SIAM J. Optim. 29(4), 3201–3230 (2019). https://doi.org/10.1137/18M121040X

    Article  MathSciNet  MATH  Google Scholar 

  2. Beck, A.: First-Order Methods in Optimization. SIAM, Philadelphia (2017)

    Book  Google Scholar 

  3. Beck, A., Eldar, Y.C.: Sparsity constrained nonlinear optimization: optimality conditions and algorithms. SIAM J. Optim. 23(3), 1480–1509 (2013)

    Article  MathSciNet  Google Scholar 

  4. Bienstock, D.: Computational study of a family of mixed-integer quadratic programming problems. Math. Program. 74(2), 121–140 (1996)

    Article  MathSciNet  Google Scholar 

  5. Branda, M., Bucher, M., Červinka, M., Schwartz, A.: Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization. Comput. Optim. Appl. 70(2), 503–530 (2018)

    Article  MathSciNet  Google Scholar 

  6. Bucher, M., Schwartz, A.: Second-order optimality conditions and improved convergence results for regularization methods for cardinality-constrained optimization problems. J. Optim. Theory Appl. 178, 383–410 (2018)

    Article  MathSciNet  Google Scholar 

  7. Burdakov, O., Kanzow, C., Schwartz, A.: On a reformulation of mathematical programs with cardinality constraints. In: D. Gao, N. Ruan, W. Xing (eds.) Advances in Global Optimization. Springer Proceedings in Mathematics and Statistics (2015)

  8. Burdakov, O., Kanzow, C., Schwartz, A.: Mathematical programs with cardinality constraints: reformulation by complementarity-type conditions and a regularization method. SIAM J. Optim. 26(1), 397–425 (2016)

    Article  MathSciNet  Google Scholar 

  9. Burke, J.V.: A sequential quadratic programming algorithm for potentially infeasible mathematical programs. J. Math. Anal. Appl. 139, 319–351 (1989)

    Article  MathSciNet  Google Scholar 

  10. Candès, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  11. Červinka, M., Kanzow, C., Schwartz, A.: Constraint qualifications and optimality conditions for optimization problems with cardinality constraints. Math. Program. 160, 353–377 (2016)

    Article  MathSciNet  Google Scholar 

  12. d’Aspremont, A., Bach, F., Ghaoui, L.E.: Optimal solutions for sparse principal component analysis. J. Mach. Learn. Res. 9, 1269–1294 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Dussault, J.P., Haddou, M., Kadrani, A., Migot, T.: How to compute an M-stationary point of the MPCC. Tech. rep. Université Sherbrooke, Sherbrooke (2019)

    Google Scholar 

  14. Flegel, M.L., Kanzow, C.: On M-stationary points for mathematical programs with equilibrium constraints. J. Math. Anal. Appl. 310(1), 286–302 (2005)

    Article  MathSciNet  Google Scholar 

  15. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12(4), 979–1006 (2002)

    Article  MathSciNet  Google Scholar 

  16. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York Inc., New York (2001)

    Book  Google Scholar 

  17. Hoheisel, T., Kanzow, C., Schwartz, A.: Convergence of a local regularization approach for mathematical programmes with complementarity or vanishing constraints. Optim. Methods Softw. 27(3), 483–512 (2012)

    Article  MathSciNet  Google Scholar 

  18. Izmailov, A.F.: Mathematical programs with complementarity constraints: regularity, optimality conditions, and sensitivity. Comput. Math. Math. Phys. 44(7), 1145–1164 (2004)

    MathSciNet  Google Scholar 

  19. Li, X., Song, W.: The first-order necessary conditions for sparsity constrained optimization. J. Oper. Res. Soc. China 3, 521–535 (2015)

    Article  MathSciNet  Google Scholar 

  20. Markowitz, H.: Portfolio selection. J. Finance 7, 77–91 (1952)

    Google Scholar 

  21. Miller, A.: Subset Selection in Regression. Chapman and Hall/CRC Press, Boca Raton (2002)

    Book  Google Scholar 

  22. Outrata, J.V.: Optimality conditions for a class of mathematical programs with equilibrium constraints. Math. Oper. Res. 24(3), 627–644 (1999)

    Article  MathSciNet  Google Scholar 

  23. Pan, L.L., Xiu, N.H., Zhou, S.L.: On solutions of sparsity constrained optimization. J. Oper. Res. Soc. China 3, 421–439 (2015)

    Article  MathSciNet  Google Scholar 

  24. Ramos, A.: Mathematical programs with equilibrium constraints: a sequential optimality condition, new constraint qualifications and algorithmic consequences. Optim. Methods Softw. (2019). https://doi.org/10.1080/10556788.2019.1702661

    Article  MATH  Google Scholar 

  25. Ribeiro, A.A., Sachine, M., Santos, S.A.: On the augmented subproblems within sequential methods for nonlinear programming. Comput. Appl. Math. 36, 1255–1272 (2017)

    Article  MathSciNet  Google Scholar 

  26. Ribeiro, A.A., Sachine, M., Santos, S.A.: On the approximate solutions of augmented subproblems within sequential methods for nonlinear programming. Comput. Appl. Math. 37, 6601–6618 (2018)

    Article  MathSciNet  Google Scholar 

  27. Ruiz-Torrubiano, R., García-Moratilla, S., Suárez, A.: Optimization problems with cardinality constraints. In: Tenne, Y., Goh, C.K. (eds.) Computational Intelligence in Optimization, pp. 105–130. Academic Press, Berlin (2010)

    Chapter  Google Scholar 

  28. Scheel, H., Scholtes, S.: Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 25(1), 1–22 (2000)

    Article  MathSciNet  Google Scholar 

  29. Sun, X., Zheng, X., Li, D.: Recent advances in mathematical programming with semi-continuous variables and cardinality constraint. J. Oper. Res. Soc. China 1, 55–77 (2013)

    Article  Google Scholar 

  30. Svanberg, K.: A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J. Optim. 12, 555–573 (2002)

    Article  MathSciNet  Google Scholar 

  31. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are thankful to the remarks and suggestions of the reviewers, which helped us to improve the presentation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ademir A. Ribeiro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by CNPq (Grant 309437/2016-4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krulikovski, E.H.M., Ribeiro, A.A. & Sachine, M. On the Weak Stationarity Conditions for Mathematical Programs with Cardinality Constraints: A Unified Approach. Appl Math Optim 84, 3451–3473 (2021). https://doi.org/10.1007/s00245-021-09752-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-021-09752-0

Keywords

Mathematics Subject Classification

Navigation