Skip to main content
Log in

Liouville theorems for nonnegative solutions to static weighted Schrödinger–Hartree–Maxwell type equations with combined nonlinearities

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the physically interesting static weighted Schrödinger–Hartree–Maxwell type equations

$$\begin{aligned} (-\Delta )^{\frac{\alpha }{2}}u(x)=c_{1}|x|^{a}\left( \frac{1}{|x|^{\sigma }}*|u|^{q_{1}}\right) u^{p_{1}}(x)+c_{2}|x|^{b}u^{p_{2}}(x) \quad \text {in} \quad \mathbb {R}^{n} \end{aligned}$$

with combined nonlinearities, where \(n\ge 2\), \(0<\alpha \le 2\), \(0<\sigma <n\), \(c_{1}, \, c_{2}\ge 0\) with \(c_{1}+c_{2}>0\), \(0\le a,b<+\infty \), \(0<q_{1}\le \frac{2n-\sigma }{n-\alpha }\), \(0<p_{1}\le \frac{n+\alpha -\sigma +2a}{n-\alpha }\) and \(0<p_{2}\le \frac{n+\alpha +2b}{n-\alpha }\). We derive Liouville theorems (i.e., non-existence of nontrivial nonnegative solutions) in the subcritical cases (see Theorem 1.1). The argument used in our proof is the method of scaling spheres developed in Dai and Qin (Liouville type theorems for fractional and higher order Hénon–Hardy equations via the method of scaling spheres, arXiv:1810.02752). As a consequence, we also derive Liouville theorem for weighted Schrödinger–Hartree–Maxwell type systems. Our results extend the Liouville theorems in Dai and Liu (Calc Var Partial Differ Equ 58(4): Paper No. 156, 24 pp, 2019) and Dai et al. (Classification of nonnegative solutions to static Schrödinger–Hartree–Maxwell type equations, arXiv:1909.00492) for \(0<\alpha \le 2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bertoin, J.: Lévy Processes, Cambridge Tracts in Mathematics, 121. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  2. Brandle, C., Colorado, E., de Pablo, A., Sanchez, U.: A concave-convex elliptic problem involving the fractional Laplacian. Proc. R. Soc. Edinb. A Math. 143, 39–71 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cabré, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224, 2052–2093 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caffarelli, L., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math. 42, 271–297 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. PDEs 32, 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caffarelli, L., Vasseur, L.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171(3), 1903–1930 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao, D., Dai, W.: Classification of nonnegative solutions to a bi-harmonic equation with Hartree type nonlinearity. Proc. R. Soc. Edinb. A Math. 149, 979–994 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cao, D., Dai, W., Qin, G.: Super poly-harmonic properties, Liouville theorems and classification of nonnegative solutions to equations involving higher-order fractional Laplacians. To appear in Trans. Am. Math. Soc., 32 pp. arXiv:1905.04300

  9. Cao, D., Dai, W., Zhang, Y.: Existence and symmetry of solutions to 2-D Schrödinger–Newton equations. Preprint, submitted for publication. arXiv:2007.12907

  10. Cao, D., Li, H.: High energy solutions of the Choquard equation. Disc. Cont. Dyn. Syst. A 38(6), 3023–3032 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chang, S.-Y.A., Yang, P.C.: On uniqueness of solutions of \(n\)-th order differential equations in conformal geometry. Math. Res. Lett. 4, 91–102 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, W., Dai, W., Qin, G.: Liouville type theorems, a priori estimates and existence of solutions for critical order Hardy–Hénon equations in \({\mathbb{R}}^n\). Preprint, submitted for publication. arXiv:1808.06609

  13. Chen, W., Fang, Y.: A Liouville type theorem for poly-harmonic Dirichlet problems in a half space. Adv. Math. 229, 2835–2867 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, W., Fang, Y., Yang, R.: Liouville theorems involving the fractional Laplacian on a half space. Adv. Math. 274, 167–198 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, W., Li, C.: On Nirenberg and related problems—a necessary and sufficient condition. Commun. Pure Appl. Math. 48, 657–667 (1995)

    Article  MATH  Google Scholar 

  16. Chen, W., Li, C.: Moving planes, moving spheres, and a priori estimates. J. Differ. Equ. 195(1), 1–13 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, W., Li, C.: Classification of positive solutions for nonlinear differential and integral systems with critical exponents. Acta Math. Sci. 29B, 949–960 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, W., Li, C., Ou, B.: Classification of solutions for an integral equation. Commun. Pure Appl. Math. 59, 330–343 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, W., Li, C., Li, Y.: A direct method of moving planes for the fractional Laplacian. Adv. Math. 308, 404–437 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, W., Li, Y., Zhang, R.: A direct method of moving spheres on fractional order equations. J. Funct. Anal. 272(10), 4131–4157 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, W., Li, Y., Ma, P.: The Fractional Laplacian. World Scientific Publishing Co. Pvt. Ltd., 350 pp, (2019). https://doi.org/10.1142/10550

  22. Cingolani, S., Weth, T.: On the planar Schrödinger–Poisson system. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(1), 169–197 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Constantin, P.: Euler equations, Navier–Stokes equations and turbulence. In: Mathematical Foundation of Turbulent Viscous Flows, vol. 1871 of Lecture Notes in Math., pp. 1–43, Springer, Berlin (2006)

  24. Dai, W., Duyckaerts, T.: Uniform a priori estimates for positive solutions of higher order Lane-Emden equations in \({\mathbb{R}}^{n}\). Publicacions Matematiques 65, 319–333 (2021)

    Article  MathSciNet  Google Scholar 

  25. Dai, W., Fang, Y., Qin, G.: Classification of positive solutions to fractional order Hartree equations via a direct method of moving planes. J. Differ. Equ. 265, 2044–2063 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dai, W., Fang, Y., Huang, J., Qin, Y., Wang, B.: Regularity and classification of solutions to static Hartree equations involving fractional Laplacians. Discret. Contin. Dyn. Syst. A 39(3), 1389–1403 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dai, W., Liu, Z.: Classification of nonnegative solutions to static Schrödinger–Hartree and Schrödinger–Maxwell equations with combined nonlinearities. Calc. Var. Partial Differ. Equ., 58(4): Paper No. 156, 24 pp (2019)

  28. Dai, W., Liu, Z., Qin, G.: Classification of nonnegative solutions to static Schrödinger–Hartree-Maxwell type equations. To appear in SIAM J. Math. Anal., 31 pp. arXiv:1909.00492

  29. Dai, W., Qin, G.: Classification of nonnegative classical solutions to third-order equations. Adv. Math. 328, 822–857 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dai, W., Qin, G.: Liouville type theorems for fractional and higher order Hénon–Hardy equations via the method of scaling spheres. Preprint, submitted for publication. arXiv:1810.02752

  31. Dai, W., Qin, G.: Liouville type theorem for critical order Hénon–Lane–Emden type equations on a half space and its applications. Preprint, submitted for publication. arXiv:1811.00881

  32. Dai, W., Qin, G.: Liouville type theorems for elliptic equations with Dirichlet conditions in exterior domains. J. Differ. Equ. 269, 7231–7252 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dai, W., Qin, G., Zhang, Y.: Liouville type theorem for higher order Hénon equations on a half space. Nonlinear Anal. 183, 284–302 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Frohlich, J., Lenzmann, E.: Mean-field limit of quantum bose gases and nonlinear Hartree equation. In: Sminaire E. D. P. (2003–2004), Expos nXVIII, 26p

  35. Gidas, B., Ni, W., Nirenberg, L.: Symmetry and related properties via maximum principle. Commun. Math. Phys. 68, 209–243 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gidas, B., Spruck, J.: A priori bounds for positive solutions of nonlinear elliptic equations. Commun. PDE 6(8), 883–901 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  37. Jin, Q., Li, Y.Y., Xu, H.: Symmetry and asymmetry: the method of moving spheres. Adv. Differ. Equ. 13(7), 601–640 (2007)

    MathSciNet  MATH  Google Scholar 

  38. Karpman, V.L.: Stabilization of soliton instabilities by high-order dispersion: fourth order nonlinear Schrödinger-type equations. Phys. Rev. E 53(2), 1336–1339 (1996)

    Article  Google Scholar 

  39. Lei, Y.: Qualitative analysis for the Hartree-type equations. SIAM J. Math. Anal. 45, 388–406 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, Y.Y.: Remark on some conformally invariant integral equations: the method of moving spheres. J. Eur. Math. Soc. 6, 153–180 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Li, D., Miao, C., Zhang, X.: The focusing energy-critical Hartree equation. J. Differ. Equ. 246, 1139–1163 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Li, Y.Y., Zhang, L.: Liouville type theorems and Harnack type inequalities for semilinear elliptic equations. J. Anal. Math 90, 27–87 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Li, Y.Y., Zhu, M.: Uniqueness theorems through the method of moving spheres. Duke Math. J. 80, 383–417 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lieb, E.H.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. 118(2), 349–374 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lieb, E., Simon, B.: The Hartree–Fock theory for Coulomb systems. Commun. Math. Phys. 53, 185–194 (1977)

    Article  MathSciNet  Google Scholar 

  46. Lin, C.S.: A classification of solutions of a conformally invariant fourth order equation in \({\mathbb{R}}^{n}\). Comment. Math. Helv. 73, 206–231 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  47. Liu, S.: Regularity, symmetry, and uniqueness of some integral type quasilinear equations. Nonlinear Anal. 71, 1796–1806 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195(2), 455–467 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Miao, C., Xu, G., Zhao, L.: Global well-posedness, scattering and blow-up for the energy-critical, focusing Hartree equation in the radial case. Colloq. Math. 114, 213–236 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265(2), 153–184 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Moroz, V., Van Schaftingen, J.: Existence of groundstates for a class of nonlinear Choquard equations. Trans. Am. Math. Soc. 367(9), 6557–6579 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Padilla, P.: On some nonlinear elliptic equations, Thesis, Courant Institute (1994)

  53. Poláčik, P., Quittner, P., Souplet, P.: Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part I: elliptic systems. Duke Math. J. 139, 555–579 (2007)

  54. Stein, E. M.: Singular Integrals and Differentiability Properties of Functions. Princeton Landmarks in Mathematics, Princeton University Press, Princeton (1970)

  55. Serrin, J.: A symmetry problem in potential theory. Arch. Rationa. Mech. Anal. 43, 304–318 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  56. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60, 67–112 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  57. Wei, J., Xu, X.: Classification of solutions of higher order conformally invariant equations. Math. Ann. 313(2), 207–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  58. Xu, X.: Exact solutions of nonlinear conformally invariant integral equations in \({\mathbb{R}}^{3}\). Adv. Math. 194, 485–503 (2005)

    Article  MathSciNet  Google Scholar 

  59. Xu, D., Lei, Y.: Classification of positive solutions for a static Schrödinger–Maxwell equation with fractional Laplacian. Appl. Math. Lett. 43, 85–89 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zhuo, R., Chen, W., Cui, X., Yuan, Z.: Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian. Discret. Contin. Dyn. Syst. A 36(2), 1125–1141 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for their careful reading and valuable comments and suggestions that improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Dai.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Wei Dai is supported by the NNSF of China (No. 11971049), the Fundamental Research Funds for the Central Universities and the State Scholarship Fund of China (No. 201806025011). Shaolong Peng is supported by the NNSF of China (No. 11971049).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, W., Peng, S. Liouville theorems for nonnegative solutions to static weighted Schrödinger–Hartree–Maxwell type equations with combined nonlinearities. Anal.Math.Phys. 11, 46 (2021). https://doi.org/10.1007/s13324-021-00479-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-021-00479-3

Keywords

Mathematics Subject Classification

Navigation