Skip to main content
Log in

Slippage flow of MHD radiative Maxwell nanofluid with CNTs over a moving flat surface with heat and mass diffusion

  • Original Research
  • Published:
Mathematical Sciences Aims and scope Submit manuscript

Abstract

The radiative MHD unsteady natural flow of Maxwell nanofluid with CNTs (carbon nanotubes) under heat and mass transport past a vertically extended wall subject to slip/no-slip conditions is characterized in this study. Heat generation and thermodiffusion are also considered. The governing equation of flow model of CNTs Maxwell fluid is solved analytical by utilizing the Laplace transform method, and temperature, concentration and velocity fields are established as solutions. The physical aspects of slip with other involved parameters and volume fraction of CNTs are outlined graphically. Three different situations are considered by imposing the specification on the arbitrary motion of the plate, and known solutions have been recovered. Furthermore, a comparison is made among the present and already existing velocity fields to check the validity of this result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Vieru, D., Imran, M.A., Rauf, A.: Slip effect on free convection flow of second grade fluids with ramped wall temeprature. Heat Transf. Res. 46(8), 713–724 (2015)

    Article  Google Scholar 

  2. Tahir, M., Imran, M.A., Raza, N., Abdullah, M., Aleem, M.: Wall slip and non-integer order derivative effects on the heat transfer flow of Maxwell fluid over an oscillating vertical plate with new definition of fractional Caputo–Fabrizio derivatives. Results Phys. 7, 1887–1898 (2017)

    Article  Google Scholar 

  3. Jameel, M., Khan, N.: Slip effects on Fractional viscoelastic fluids. Int. J. Differ. Equ. 2011, 1–20 (2011)

    MathSciNet  Google Scholar 

  4. Hayat, T., Afzaal, M., Fetecau, C., Hendi, A.: Slip effects on the oscillatory flow in porous medium. J. Porous Media 14(6), 481–493 (2011)

    Article  Google Scholar 

  5. Imran, M.A., Shah, N.A., Rafique, K., Sohail, A., Ejaz, S.: General solutions of convevtive flows of MHD Casson fluid with slip and radiative heat transfer at the boundary. Comput. Therm. Sci. 9(1), 1–11 (2011)

    Article  Google Scholar 

  6. Sajid, M., Abbas, Z., Ali, N., Javaid, T., Ahmad, I.: Slip flow of a Maxwell fluid past a stretching sheet. Walailak J. Sci. Technol. 11(12), 1093–1103 (2014)

    Google Scholar 

  7. Hayat, T., Sajjad, R., Abbas, Z., Sajid, M., Hendi, A.: Radiation effects on MHD flow of Maxwell fluid in a channel with porous medium. Int. J. Heat Mass Transf. 54, 854–862 (2011)

    Article  MATH  Google Scholar 

  8. Mathure, P., Jha, A., Sharma, A.: Effects of radiation on upper convected Maxwell fluid flow over a stretching sheet. Int. J. Latest Technol. Eng. Manag. Appl. Sci. 4(5), 21–30 (2015)

    Google Scholar 

  9. Khan, I., Shah, N.A.: A scientific report on heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate. Sci. Rep. 7, 1–12 (2017)

    Google Scholar 

  10. Shah, N.A., Zafar, A.A.: Some unidirectional flows of Maxwell fluids with time-dependent viscosity and fractional calculus modeling. Bull. Polytech. Inst. Lasi 4, 55–71 (2015)

    MATH  Google Scholar 

  11. Imran, M.A., Sarwar, S., Imran, M., Aleem, M.: Combined effect of slip and radiation on MHD flow past a constantly moving vertical plate with variable temperature. J. Prime Res. Math. 12, 130–144 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Opangua, A., Okagbua, H., Agboola, O.O., Amina, B.S.: Second law analysis of ion slip effect on MHD couple stress fluid. Int. J. Mech. 12, 96–101 (2018)

    Google Scholar 

  13. Hayat, T., Asghar, Z.: Heat transfer analysis on the peristaltic motion with slip effects. Zeitschrift Naturforsch 65, 697–704 (2010)

    Article  Google Scholar 

  14. Hayat, T., Hina, S., Hendi, A.A.: Slip effects on peristaltic transport of a Maxwell fluid with heat and mass transfer. J. Mech. Med. Biol. 12, 1–22 (2012)

    Google Scholar 

  15. Shakeel, A., Ahmad, S., Khan, H., Shah, N.A., Haq, S.: Flows with slip of Oldroyd-B fluids over a moving plate. Adv. Math. Phys. 2016, 1–9 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hayat, T., Imtiaz, M.: Partial slip effects in flow over nonlinear stretching surface. Appl. Math. Mech. 36(11), 1513–1526 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shah, N.A., Fetecau, C., Vieru, D.: First general solutions for unsteady unidirectional motions of rate type fluids in cylindrical domains. Alex. Eng. J. 57, 1185–1196 (2018)

    Article  Google Scholar 

  18. Shah, R.A., Abbas, T., Idrees, M., Murad: MHD Carreau fluid slip flow over a porous stretching sheet with viscous dissipation and variable thermal conductivity. Bound. Value Probl. 94, 1–17 (2017)

    MATH  Google Scholar 

  19. Freidoonimehr, N., Jafari, S.S.: Second law of thermodynamics analysis of hydro-magnetic nano-fluid slip flow over a stretching permeable surface. J. Braz. Soc. Mech. Sci. Eng. 37(4), 1–13 (2015)

    Google Scholar 

  20. Schneider, S.: Wall slip effects measuring the rheological behaviour of electrorheological (ER) suspensions. Int. J. Mod. Phys. B 26(1), 1–11 (2012)

    Article  Google Scholar 

  21. Turkyilmazoglu, M., Pop, I.: Soret and heat source effects on the unsteady radiative MHD free convection flow from an impulsively started infinite vertical plate. Int. J. Heat Mass Transf. 55(25–26), 7635–7644 (2012)

    Article  Google Scholar 

  22. Raza, J.: Thermal radiation and slip effects on magnetohydrodynamic (MHD) stagnation point flow of Casson fluid over a convective stretching sheet. Propuls. Power Res. 8(2), 138–146 (2019)

    Article  Google Scholar 

  23. Norouzi, M., Davoodi, M., Anwar Bég, O., Shamshuddin, M.D.: Theoretical study of Oldroyd-B visco-elastic fluid flow through curved pipes with slip effects in polymer flow processing. Int. J. Appl. Comput. Math. 4(8), 32–47 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Khan, S.A., Nie, Y., Ali, B.: Multiple slip effects on MHD unsteady viscoelastic nano-fluid flow over a permeable stretching sheet with radiation using the finite element method. SN Appl. Sci. 2(66), 1–15 (2020)

    Google Scholar 

  25. Fetecau, C., Vieru, D., Fetecau, C., Pop, I.: Slip effects on the unsteady radiative MHD free convection flow over a moving plate with mass diffusion and heat source. Eur. Phys. J. Plus 130(6), 1–13 (2015)

    Google Scholar 

  26. Waqas, H., Khan, S.U., Bhatti, M.M., Imran, M.: Significance of bioconvection in chemical reactive flow of magnetized Carreau–Yasuda nanofluid with thermal radiation and second-order slip. J. Therm. Anal. Calorim. 140, 1293–1306 (2020)

    Article  Google Scholar 

  27. Waqas, H., Khan, S.U., Shehzad, S.A., Imran, M., Tlili, I.: Activation energy and bioconvection aspects in generalized second-grade nanofluid over a Riga plate: a theoretical model. Appl. Nanosci. 10, 4445–4458 (2020)

    Article  Google Scholar 

  28. Khan, S.U., Tlili, I., Waqas, H., Muhammad, I.: Effects of nonlinear thermal radiation and activation energy on modified second-grade nanofluid with Cattaneo-Christov expressions. J. Therm. Anal. Calorim. 143, 1–18 (2020)

    Google Scholar 

  29. Javaid, M., Imran, M., Fetecau, C., Vieru, D.: General solutions for the mixed boundary value problem associated to hydromagnetic flows of a viscous fluid between symmetrically heated parallel plates. Therm. Sci. 24(2), 1389–1405 (2020)

    Article  Google Scholar 

  30. Li, Y., Waqas, H., Imran, M., Farooq, U., Mallaw, F., Tlili, I.: A numerical exploration of modified second-grade nanofluid with motile microorganisms, thermal radiation, and Wu’s slip. Symmetry 12, 393–411 (2020)

    Article  Google Scholar 

  31. Xiao, Y., Shah, N.A., Irshad, T.: Magneto-hydrodynamics natural convection flows of viscous carbon nanotubes nanofluids with generalized Fourier’s law in a vertical cylinder. Math. Methods Appl. Sci. 1–16 (2020)

  32. Jing, D., Hatami, M.: Peristaltic Carreau–Yasuda nanofluid flow and mixed heat transfer analysis in an asymmetric vertical and tapered wavy wall channel. Rep. Mech. Eng. 1(1), 128–140 (2020)

    Article  Google Scholar 

  33. Sobamowo, G.: Finite element thermal analysis of a moving porous fin with temperature-variant thermal conductivity and internal heat generation. Rep. Mech. Eng. 1(1), 110–127 (2020)

    Article  MathSciNet  Google Scholar 

  34. Hamzah, H.K., Ali, F., Hatami, M., Jing, D.: Effect of two baffles on MHD natural convection in u-shape? superposed by solid nanoparticle having different shapes. J. Appl. Comput. Mech. 6(Special Issue), 1200–1209 (2020)

    Google Scholar 

  35. Mondal, H., Bharti, S.: Spectral quasi-linearization for MHD nanofluid stagnation boundary layer flow due to a stretching/shrinking surface. J. Appl. Comput. Mech. 6(4), 1058–1068 (2020)

    Google Scholar 

  36. Wang, G., Yao, Y., Chen, Z., Hu, P.: Thermodynamic and optical analyses of a hybrid solar CPV/T system with high solar concentrating uniformity based on spectral beam splitting technology. Energy 166, 256–266 (2019)

    Article  Google Scholar 

  37. Yu, H., Dai, W., Qian, G., Gong, X., Zhou, D., Li, X., Zhou, X.: The NOx degradation performance of nano-TiO2 coating for asphalt pavement. Nanomaterials 10(5), 897–912 (2019)

    Article  Google Scholar 

  38. Guo, C., Hu, M., Li, Z., Duan, F., He, L., Zhang, Z., Du, M.: Structural hybridization of bimetallic zeolitic imidazolate framework (ZIF) nanosheets and carbon nanofibers for efficiently sensing a-synuclein oligomers. Sens. Actuators B Chem. 309, 127821 (2020)

    Article  Google Scholar 

  39. Liu, C., Huang, X., Wu, Y., Deng, X., Liu, J., Zheng, Z., Hui, D.: Review on the research progress of cement-based and geopolymer materials modified by graphene and graphene oxide. Nanotechnol. Rev. (Berlin) 9(1), 155–169 (2020)

    Article  Google Scholar 

  40. Yan, H., Xue, X., Chen, W., Wu, X., Dong, J., Liu, Y., Wang, Z.: Reversible Na+ insertion/extraction in conductive polypyrrole-decorated NaTi2(PO4)3 nanocomposite with outstanding electrochemical property. Appl. Surf. Sci. 530, 147295 (2020)

    Article  Google Scholar 

  41. Luo, X., Hu, H., Pan, Z., Pei, F., Qian, H., Miao, K., Feng, G.: Efficient and stable catalysis of hollow Cu-9S5 nanospheres in the Fenton-like degradation of organic dyes. J. Hazard. Mater. 396(2020), 122735 (2020)

    Article  Google Scholar 

  42. Liu, Y., Zhang, Q., Xu, M., Yuan, H., Chen, Y., Zhang, J., You, B.: Novel and efficient synthesis of Ag–ZnO nanoparticles for the sunlight-induced photocatalytic degradation. Appl. Surf. Sci. 476, 632–640 (2019)

    Article  Google Scholar 

  43. Liu, J., Wang, C., Sun, H., Wang, H., Rong, F., He, L., Du, M.: CoOx/CoNy nanoparticles encapsulated carbon-nitride nanosheets as an efficiently trifunctional electrocatalyst for overall water splitting and Zn–air battery. Appl. Catal. B 279, 119407 (2020)

    Article  Google Scholar 

  44. Howell, J.R., Siegel, R.: Thermal Radiation Heat Transfer, 5th edn. Taylor & Francis, New York (2011)

    Google Scholar 

  45. Magyari, E., Pantokratoras, A.: Note on the effect of thermal radiation in the linearized Rosseland approximation on the heat transfer characteristics of various boundary layer flows. Int. Commun. Heat Mass Transf. 38, 554–556 (2011)

    Article  Google Scholar 

  46. Fetecau, C., Vieru, D., Fetecau, C., Akhter, S.: General solutions for magnetohydrodynamic natural convection flow with radiative heat transfer and slip condition over a moving plat. Zeitschrift Naturforsch 68a, 659–667 (2013)

    Article  Google Scholar 

  47. Narahari, M., Dutta Binay, K.: Effects of thermal radiation and mass diffusion on free convection flow near a vertical plate with Newtonian heating. Chem. Eng. Commun. 199(5), 628–643 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nehad Ali Shah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, A., Ahmad, M., Nazar, M. et al. Slippage flow of MHD radiative Maxwell nanofluid with CNTs over a moving flat surface with heat and mass diffusion. Math Sci (2021). https://doi.org/10.1007/s40096-021-00378-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40096-021-00378-5

Keywords

Navigation