Skip to main content
Log in

Interface characteristics between TiN and matrix and their effect on solidification structure

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Heterogeneous nucleation is an effective way to promote the dispersion and precipitation of second-phase particles in steel and refine the grain size of the solidification structure. Not only refining as-cast structure grain size, but TiN in ferritic stainless steel can also pin grain boundaries and restrain the overgrowth of grains during rolling. The interface characteristics between TiN and heterogeneous phases (high-melting inclusions and ferrite phase) were studied based on the wetting angles between molten steel with different compositions and TiN substrate, and on the matching degree between TiN and ferrite lattice. It was found that, for the molten steel with the same composition, the wetting angle with the TiN substrate was significantly smaller than the contact angles with the other three substrates, while the wetting angle between ferrite phase and TiN was the smallest. The lattice matching was compared among MgAl2O4, TiN and δ matrix by means of a high-resolution transmission electron microscope, which revealed that a coherent or semi-coherent interface was formed between the crystal plane (400) of MgAl2O4 and the crystal plane (200) of TiN, as well as between the crystal plane (200) of TiN and the crystal plane (110) of δ matrix, with a lattice misfit of 5.1% and 3.4%, respectively. Finally, these two characteristics between TiN and ferrite phase were both explained from the perspective of interfacial energy. The microstructure refinement mechanism from high temperature to room temperature can be better reflected by the proposed wetting–lattice misfit theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. T. Maki, Tetsu-to-Hagane 81 (1995) N547–N555.

    Article  Google Scholar 

  2. A. Suzuki, Tetsu-to-Hagane 60 (1974) 774–783.

    Article  Google Scholar 

  3. Y. Ujiie, H. Maede, Y. Itoh, S. Ogibayashi, H. Seki, K. Wada, Y. Itoh, Tetsu-to-Hagane 67 (1981) 1297–1306.

    Article  Google Scholar 

  4. T. Ohashi, T. Hiromoto, H. Fujii, Y. Nuri, K. Asano, Tetsu-to-Hagane 62 (1976) 614–623.

    Article  Google Scholar 

  5. J.S. Park, J.H. Park, Steel Res. Int. 85 (2014) 1303–1309.

    Article  Google Scholar 

  6. Y. Morikage, K. Oi, F. Kawabata, K. Amano, Tetsu-to-Hagane 84 (1998) 510–515.

    Article  Google Scholar 

  7. D.S. Sarma, A.V. Karasev, P.G. Jonsson, ISIJ Int. 49 (2009) 1063–1074.

    Article  Google Scholar 

  8. K. Kimura, S. Fukumoto, G.I. Shigesato, A. Takahashi, ISIJ Int. 53 (2013) 2167–2175.

    Article  Google Scholar 

  9. S. Fukumoto, K. Kimura, A. Takahashi, Tetsu-to-Hagane 98 (2012) 351–357.

    Article  Google Scholar 

  10. J.S. Park, D.H. Kim, J.H. Park, J. Alloy. Compd. 695 (2017) 476–481.

    Article  Google Scholar 

  11. J.Y. Kim, N.R. Oh, Y.H. Oh, Y.T. Cho, W.B. Lee, S.K. Kim, H.U. Hong, Mater. Charact. 132 (2017) 348–353.

    Article  Google Scholar 

  12. J.S. Park, C. Lee, J.H. Park, Metall. Mater. Trans. B 43 (2012) 1550–1564.

    Article  Google Scholar 

  13. J.P. Liang, C.J. Song, L.X. Wang, Z.J. Li, Q.J. Zhai, Mater. Technol. 27 (2012) 333–336.

    Article  Google Scholar 

  14. Y.M. Tian, Z.P. Chen, Y.T. Xu, M.T. Gong, D. Shu, J. Iron Steel Res. 26 (2014) No. 6, 61–66.

    Google Scholar 

  15. K. Isobe, ISIJ Int. 50 (2010) 1972–1980.

    Article  Google Scholar 

  16. H. Mizukami, M. Numata, A. Yamanaka, ISIJ Int. 56 (2016) 1420–1426.

    Article  Google Scholar 

  17. H. Ohta, H. Suito, ISIJ Int. 47 (2007) 197–206.

    Article  Google Scholar 

  18. D.Y. Wang, M.F. Jiang, H. Matsuura, F. Tsukihashi, Steel Res. Int. 85 (2014) 16–25.

    Article  Google Scholar 

  19. Y. Watanabe, H. Sato, J. Jpn. I. Met. Mater. 64 (2014) 157–163.

    Google Scholar 

  20. M. Li, J.M. Li, D. Qiu, Q. Zheng, G. Wang, M.X. Zhang, Philos. Mag. 96 (2016) 1556–1578.

    Article  Google Scholar 

  21. L. Wang, L. Yang, D. Zhang, M. Xia, Y. Wang, J.G. Li, Metall. Mater. Trans. A 47 (2016) 5012–5022.

    Article  Google Scholar 

  22. L. Wang, W.Q. Lu, Q.D. Hu, M.X. Xia, Y. Wang, J.G. Li, Acta Mater. 139 (2017) 75–85.

    Article  Google Scholar 

  23. B.J. Monaghan, M.W. Chapman, S.A. Nightingale, ISIJ Int. 50 (2010) 1707–1712.

    Article  Google Scholar 

  24. C. Xuan, H. Shibata, S. Sukenaga, P.G. Jonsson, K. Nakajima, ISIJ Int. 55 (2015) 1882–1890.

    Article  Google Scholar 

  25. J.F. Padday, D.R. Russell, J. Colloid Sci. 15 (1960) 503–511.

    Article  Google Scholar 

  26. B.F. Dyson, Trans. Metall. Soc. AIME 227 (1963) 1098–1103.

    Google Scholar 

  27. L.J. Zhou, Z.H. Pan, W.L. Wang, J.Y. Chen, L.W. Xue, T.S. Zhang, L. Zhang, Metall. Mater. Trans. B 51 (2020) 85–94.

    Article  Google Scholar 

  28. M. Shin, J. Lee, J.H. Park, ISIJ Int. 48 (2008) 1665–1669.

    Article  Google Scholar 

  29. W.L. Wang, E.Z. Gao, L.J. Zhou, L. Zhang, H. Li, J. Iron Steel Res. Int. 26 (2019) 355–364.

    Article  Google Scholar 

  30. L.J. Zhou, L.J. Wen, W.L. Wang, Il. Sohn, Metall. Mater. Trans. B 48 (2017) 1943–1950.

    Article  Google Scholar 

  31. W.L. Wang, J.W. Li, L.J. Zhou, J. Yang, Met. Mater. Int. 22 (2016) 700–706.

    Article  Google Scholar 

  32. K.L. Chen, D.Y. Wang, D. Hou, T.P. Qu, J. Tian, H.H. Wang, ISIJ Int. 59 (2019) 1735–1743.

    Article  Google Scholar 

  33. B.L. Bramfitt, Metall. Trans. B 1 (1970) 1987–1995.

    Article  Google Scholar 

  34. C.W. Zhang, T.P. Qu, D.Y. Wang, J. Tian, D. Hou, J. Iron Steel Res. 31 (2019) 661–667.

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 51774208, 52074186, 51804205 and U1860205).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui-hua Wang or Dong Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Tp., Wang, Dy., Wang, Hh. et al. Interface characteristics between TiN and matrix and their effect on solidification structure. J. Iron Steel Res. Int. 28, 1149–1158 (2021). https://doi.org/10.1007/s42243-020-00546-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00546-2

Keywords

Navigation