Skip to main content
Log in

Quantum-Confinement Effect in Silicon Nanocrystals during Their Dissolution in Model Biological Fluids

  • MICROCRYSTALLINE, NANOCRYSTALLINE, POROUS, AND COMPOSITE SEMICONDUCTORS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

In present work, we studied the mechanisms of dissolution of porous silicon nanoparticles (PSi NPs) during their incubation in model liquids, i.e. water and phosphate buffered saline (PBS) at 37°С. The methods of transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy, and Raman spectroscopy were used. According to TEM images, PSi NPs consist of silicon nanocrystals (nc-Si) 2–10 nm in size and pores. It is shown that incubation of PSi NPs in water leads to enhancement of their PL, accompanied by a slight decrease in the size of nc-Si, which is associated with the passivation of defects and stabilization of the oxide shell of nanocrystals. During incubation in PBS, a significant quenching of PL and disappearance Raman signal of the PSi NPs took place. That indicates rapid dissolution of PSi NPs. We presented phenomenological model describing how quantum-confinement effect affects properties of nc-Si during their dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. L. Canham, Faraday Discuss. 222, 10 (2020).

    Article  ADS  Google Scholar 

  2. M. J. Sailor, Porous Silicon in Practice: Preparation, Characterization and Applications (Wiley, New York, 2012).

    Google Scholar 

  3. V. Lehmann, R. Stengl, and A. Luigart, Mater. Sci. Eng. B 69–70, 11 (2000).

  4. G. Ledoux, J. Gong, and F. Huisken, Appl. Phys. Lett. 80, 4834 (2002).

    Article  ADS  Google Scholar 

  5. M. B. Gongalsky, A. Yu. Kharin, L. A. Osminkina, V. Yu. Timoshenko, J. Jeong, H. Lee, and B. H. Chung, Nanoscale Res. Lett. 7, 446 (2012).

    Article  ADS  Google Scholar 

  6. V. A. Sivakov, F. Voigt, A. Berger, G. Bauer, and S. H. Christiansen, Phys. Rev. B 82, 125446 (2010).

    Article  ADS  Google Scholar 

  7. F. Voigt, V. Sivakov, V. Gerliz, G. H. Bauer, B. Hoffmann, G. Z. Radnoczi, B. Pecz, and S. Christiansen, Phys. Status Solidi A 208, 893 (2011).

    Article  ADS  Google Scholar 

  8. K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, Adv. Mater. 14, 1164 (2002).

    Article  Google Scholar 

  9. V. A. Georgobiani, K. A. Gonchar, L. A. Osminkina, and V. Yu. Timoshenko, Semiconductors 49, 1025 (2015).

    Article  ADS  Google Scholar 

  10. E. Tolstik, L. A. Osminkina, D. Akimov, M. B. Gongalsky, A. A. Kudryavtsev, V. Yu. Timoshenko, R. Heintzmann, V. Sivakov, and J. Popp, Int. J. Mol. Sci. 17, 1536 (2016).

    Article  Google Scholar 

  11. L. A. Osminkina, V. A. Sivakov, G. A. Mysov, V. A. Georgobiani, U. A. Natashina, F. Talkenberg, V. V. Solovyev, A. A. Kudryavtsev, and V. Yu. Timoshenko, Nanoscale Res. Lett. 9, 463 (2014).

    Article  ADS  Google Scholar 

  12. G. Irmer, J. Raman Spectrosc. 38, 634 (2007).

    Article  ADS  Google Scholar 

  13. K. W. Adu, H. R. Gutiérrez, U. J. Kim, G. U. Sumanasekera, and P. C. Eklund, Nano Lett. 5, 409 (2005).

    Article  ADS  Google Scholar 

  14. H. Richter, Z. P. Wang, and L. Ley, Solid State Commun. 39, 625 (1981).

    Article  ADS  Google Scholar 

  15. I. H. Campbell and P. M. Fauchet, Solid State Commun. 58, 739 (1986).

    Article  ADS  Google Scholar 

  16. E. Bustarret, M. A. Hachicha, and M. Brunel, Appl. Phys. Lett. 52, 1675 (1988).

    Article  ADS  Google Scholar 

  17. A. Compaan, M. C. Lee, and G. J. Trott, Phys. Rev. B 32, 6731 (1985).

    Article  ADS  Google Scholar 

  18. J.-H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, Nat. Mater. 8, 331 (2009).

    Article  ADS  Google Scholar 

  19. P. V. Maximchik, K. Tamarov, E. V. Sheval, E. Tolstik, T. Kirchberger-Tolstik, Z. Yang, V. Sivakov, B. Zhivotovsky, and L. A. Osminkina, ACS Biomater. Sci. Eng. 5, 6063 (2019).

    Article  Google Scholar 

  20. E. Tolstik, L. A. Osminkina, C. Matthäus, M. Burkhardt, K. E. Tsurikov, U. A. Natashina, V. Y. Timo-shenko, R. Heintzmann, J. Popp, and V. Sivakov, Nanomed.: Nanotechnol., Biol. Med. 12, 1931 (2016).

    Google Scholar 

  21. M. B. Gongalsky, U. A. Tsurikova, C. J. Storey, Y. V. Evstratova, A. A. Kudryavtsev, L. T. Canham, and L. A. Osminkina, Faraday Discuss. 222, 318 (2020).

    Article  ADS  Google Scholar 

  22. M. B. Gongalsky, A. P. Sviridov, Yu. I. Bezsudnova, and L. A. Osminkina, Colloids Surf., B 190, 110946 (2020).

    Article  Google Scholar 

  23. A. G. Cullis and L. T. Canham, Nature (London, U.K.) 353, 335 (1991).

    Article  ADS  Google Scholar 

  24. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).

    Article  ADS  Google Scholar 

  25. G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, Phys. Rev. B 62, 15942 (2000).

    Article  ADS  Google Scholar 

  26. H. J. von Bardeleben, M. Chamarro, A. Grosman, V. Morazzani, C. Ortega, J. Siejka, and S. Rigo, J. Lumin. 57, 39 (1993).

    Article  Google Scholar 

  27. J. Zi, K. Zhang, and X. Xie, Phys. Rev. B 55, 9263 (1997).

    Article  ADS  Google Scholar 

  28. M. B. Gongalsky, J. V. Kargina, J. F. Cruz, J. F. Sánchez-Royo, V. S. Chirvony, L. A. Osminkina, and M. J. Sailor, Front. Chem. 7, 165 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-32-90112, and by the Russian Scientific Foundation, project no. 19-72-10131.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Osminkina.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Korovin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gongalsky, M.B., Tsurikova, U.A., Gonchar, K.A. et al. Quantum-Confinement Effect in Silicon Nanocrystals during Their Dissolution in Model Biological Fluids. Semiconductors 55, 61–65 (2021). https://doi.org/10.1134/S1063782621010097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782621010097

Keywords:

Navigation