Skip to main content
Log in

Nitrosamines in Aquatic Ecosystems: Sources, Formation, Toxicity, Environmental Risk (Review) 1. Structure, Properties, Ways of Entering and Formation in Waterbodies

  • HYDROCHEMISTRY, HYDROBIOLOGY: ENVIRONMENTAL ASPECTS
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Due to the saturation of natural waters with nitrogen compounds resulting from natural processes and anthropogenic activities, the problem arises of studying the ways of their migration, transformation in the hydrosphere and in aquatic biota. One of the ways of nitrogen transformation in the environment is the formation of nitrosamines—toxic organisms or biota that exhibit carcinogenic, mutagenic and teratogenic properties and have a toxic effect on living beings. The main sources of nitrogen-containing compounds, precursors of nitrosamines, into waterbodies are agricultural, industrial and municipal wastewater. The present paper analyses the ways of synthesis of nitrosamines in the aquatic environment and in living organisms or biota, the main methods of analysis of these compounds, their distribution and transformation in hydrosphere, as well as the ways of decrease in their concentrations and modern techniques for removal of nitrosamines from aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Bandman, A.L., Volkova, N.V., Grekhova, T.D., and Gudzovskii, G.A., Vrednye khimicheskie veshchestva. Neorganicheskie soedineniya elementov V–VIII grupp: Spravochnoe izdanie (Harmful Chemical Substances. Inorganic Compounds of Elements of V–VIII Groups: Reference Book), Filov, V.A., Ed., Leningrad: Khimiya, 1989.

  2. Val’ter, A.I., Kasatkina, O.A., and Petrenko, A.E., On the method for the analysis of nitrosamines in food products, Gig. Sanit., 1996, no. 6, pp. 49–50.

  3. Voronin, V.M., Litvinov, N.N., Kazachkov, V.I., Shamarin, A.A., and Zhurkov, V.S., Study on the dependence of carcinogenic effect on the cancerogenecity effect on N-nitrosodiethylamine concentration, Vopr. Onkol.,1989, vol. 35, no. 6, pp. 685–689.

    Google Scholar 

  4. Gichev, Yu.P., Zagryaznenie okruzhayushchei sredy i zdorov’e cheloveka (Environmental Pollution and Human Health), Moscow. 230 p.

  5. Dmitrienko, N.P., Kishko, O., and Shandarenko, S.G., On the rle of xantin oxidase in cytotoxic effects of nitrates and nitrites, Ukr. Biokhim. Zh., 2001, vol. 73, no. 6, pp. 113–117.

    Google Scholar 

  6. Drabkina, V.G., Causes and ways of degradation of waterbodies, in Teoriya i praktika vosstanovleniya vnutrennikh vodoemov (Theory and Practice of Restoration of Inland Waterbodies), St. Petersburg: Lema, 2007, pp. 113–120.

  7. Zul’figarov, O.S. and Yurchenko, V.V., Carcinogenic N-nitrosamines, toxic properties, formation, determination, Sovremennye Problemy toksikologii, 2005, no. 1, pp. 53–57.

  8. Izmailova, A.V., Foreign experience of restoration of inland waters (on the basis of materials of digital database “Earth Lakes,” in Teoriya i praktika vosstanovleniya vnutrennikh vodoemov (Theory and Practice of Restoration of Inland Waterbodies), St. Petersburg: Lema, 2007, pp. 15–162.

  9. Il’nitskii, A.P., Yurchenko, V.A., Zhukova, G.F., and Ermilov, V.B., Assessment of extent of hazard of low doses of nitrites, Vopr. Onkol.,1989, vol. 36, no. 7, pp. 843–847.

    Google Scholar 

  10. Klochenko, P.D., Mikhailenko, V.M., and Shevchenko, T.F., Influence of nitrosamines on development of phytoplankton, Gidrobiol. Zh., 2001, vol. 37, no. 4, pp. 30–38.

    Google Scholar 

  11. Klochenko, P.D., Sakevich, A.I., Usenko, O.M., and Shevchenko, T.F., Change in structure of phytoplankton under effect of urea, Gidrobiol. Zhur., 2000, vol. 36, no. 6, pp. 62–74.

    Google Scholar 

  12. Kostyukovskii, Ya.L. and Melamed, D.B., Carcinogenic N-nitrosamines, formation, properties, analysis, Usp. Khim., 1988, vol. 57, no. 4, pp. 625–655.

    Article  Google Scholar 

  13. Metodicheskie ukazaniya po metodam kontrolya: Metodicheskie ukazaniya, UK 4.4.1.011-93 Opredelenie letuchikh N-nitrozaminov v prodovol’stvennom syr’e i pishchevykh produktakh 1993 (Guidelines for Control Methods: Guidelines, UK 4.4.1.011–93 Determination of Volatile N-nitrosamines in Food Raw Materials and Food Products), 1993.

  14. Moiseenko, T.I., Evolution of biogeochemical cycles in modern conditions of anthropogenic loads: exposure limits, Geokhimiya, 2017, no. 10, pp. 1–22.

  15. Moiseenko, T.I. and Rudneva, I.I., Global pollution and functions of nitrogen in the hydrosphere, Dokl. Akad. Nauk, 2008, vol. 420, no. 3, pp. 395–400.

    Google Scholar 

  16. Nitraty, nitrity i N-nitrozosoedineniya. Gigienicheskie kriterii sostoyaniya okruzhayushchei sredy (Nitrates, Nitrites and N-nitroso Compounds. Hygienic Criteria for the State of the Environment), Geneva: WHO, 1981, p. 118.

  17. Omel’chenko, S.O., Seasonal dynamics of nitrosamine content in some species of the Black Sea fish, Agroekologicheskii Zhurn, 2006, no. 1, pp. 72–75.

  18. Omel’chenko, S.O., Ecotoxicological assessment of some species of the Black Sea fish, Uch. Zap. Tavricheskogo nats. un-ta, Ser. Biologiya. 2012. v. 25. No. 4, pp. 144–149

    Google Scholar 

  19. Rubenchik, B.L., Obrazovanie kantserogenov iz soedinenii azota (Formation of Carcinogens from Nitrogen Compounds), Kiev: Nauk. dumka, 1990.

  20. Rudneva, I.I., Mel’nikova, E.B., Kuz’minova, N.S., Omel’chenko, S.O., Zalevskaya, I.N., and Simchuk, G.V., Assessment of the impact of mineral nitrogen compounds on bottom fish in the Black Sea bays, Vodn. Resur., 2008, vol. 35, no. 4, pp. 260–267.

    Google Scholar 

  21. Sal'nikova, L.S., Nitrozaminy (Nitrosamines), Moscow: Tsentr mezhdunarodnykh proektov GKNT, 1983.

  22. Stankevich, S.V., Maktaz, E.D., and Kul’bich, T.S., Content of N-nitrosamines in waterbodies in relation to anthropogenic eutrophication, in Gigiena Naselennykh mest (Hygiene of Populated Areas), 1988, pp. 26–31.

  23. Terekhova, V.A., Rudneva, I.I., Poromov, A.A., Paramonova, A.I., and Kydralieva, K.A., Distribution and biological effects of antibiotics in aquatic ecosystems (review), Voda: Khimiya i ekologiya, 2019, nos. 3−6, pp. 92–112.

  24. Tutel’yan, V.A. and Luneva, N.V., On the mechanism of acute toxic action of N-nitrosodimethylamine, Farmakol. Toksikol., 1983, no. 9, pp. 111–114.

  25. Khudolei, V.V., The role of age in carcinogenesis induced by N-nitrosodimethylamine and N-dimethylnitramine in amphibians, Vopr. Onkol., 1981, vol. 27, no. 10, pp. 67–71.

    Google Scholar 

  26. Khudolei, V.V., Malavei, V.K., and Barch, Kh., Study of mutagenic properties of carcinogenic N-nitrosamines in vivo and in vitro. Vopr. onkologii, 1981, vol. 27, no. 7, pp. 843–847.

    Google Scholar 

  27. Ekotoksikologicheskie issledovaniya pribrezhnoi chernomorskoi ikhtiofauny v raione Sevastopolya (Ecotoxicological Studies of the Coastal Black Sea Fish Fauna in the Area of Sevastopol) Rudneva, I.I., Ed., Moscow: Izd-vo GEOS, 2016.

  28. Abidi, S.L., Dawson, V.K., and Hubley, R.C., Potential for nitrosamine formation in seven fishery chemicals, The progressive Fish-Culturist, 1986, no. 48, pp. 302–302.

  29. Amelin, V.G. and Bol’shakov, D.S., Rapid identification and determination of n-nitrosamines in food products by ultra-high-performance liquid chromatography-high molecules, J. Analytical Chem, 2019, vol. 74, pp. 39–46.

    Article  Google Scholar 

  30. Antia, N.J., Harrison, P.J., Oliveira, L., Anita, N.J., Harrison, P.J., and Oliveira, L., The role of dissolved organic nitrogen in phytoplankton nutrition, cell biology and ecology, Phycologia, 1991, vol. 30, pp. 1–89.

    Article  Google Scholar 

  31. Bamba, D. and Robert, D., Nitrogen-containing organic compounds: origins, toxicity and conditions of their photocatalytic mineralization over TiO2. Total, Environ., 2, vol. 580, pp. 1489–1504.

  32. Bartsch, H., Camus, A., and Malaveille, C., Comparative mutagenicity of N-nitrosamines in a semisolid and a liquid incubation system in the presence of rat or human tissue fractions, mutation research, Fundamental and Molecular Mechanisms of Mutagenesis, 1976, vol. 37, no. 2, pp. 149–162.

    Article  Google Scholar 

  33. Berman, T. and Chava, S., Algal growth on organic compounds as nitrogen sources, J. Plankton Res., 1999, vol. 21, pp. 1423–1437.

    Article  Google Scholar 

  34. Bieniarz K., Epler P., Kime D., Sokolowska-Mikolajczyk M., W. Popek W., and Mikolajczyk T., Effects of N,N-dimethylnitrosamine (dmna) on in vitro oocyte maturation and embryonic development of fertilized eggs of carp (Cyprinus carpio l.) kept in eutrophied ponds, J. Appl. Toxicol, 1996, vol. 16, pp. 153–156.

    Article  Google Scholar 

  35. Boroumand, Y. and Razmjou, A., Mussel inspired bacteriall denitrification of water using fractal patterns of polydopamine, J. Water Process Engineering, 2020, vol. 33, pp. 101–105.

    Article  Google Scholar 

  36. Deane, E.E. and Woo, N.Y., Impact of nitrite exposure on endocrine, osmoregulatory and cytoprotective functions in the marine teleost, Sparus sarba, 2007, vol. 32, pp. 85–93.

  37. Fong, Y.Y., Methods for limiting the content of dimethylnitrosamine in the chinese marine salt fish, Food Cosmet. Toxicol. Biochem. Pathol (Hong Kong), 1976, vol. 14, pp. 95–98.

    Article  Google Scholar 

  38. Gebus-Czupyt, B., Chmiel, S., Trembaczowski, A., Pelc, A., and Halas, S., Simultaneous preparation of N2 and CO2 from water nitrates for δ15N and δ18O analysis on the example of the Zemborzycki Reservoir studies, Chemosphere, 2020, vol. 248, pp. 125–154.

    Article  Google Scholar 

  39. Gomathi Devi L., Girish Kumar S., Mohan Reddy K., Munikrishnappa C. Photo degradation of methyl orange an azo dye by advanced Fenton process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism, J. Hazard. Mater., 2009. vol. 164, nos. 2–3, pp. 45–467.

    Article  Google Scholar 

  40. Holst, J., Brackin, R., and Robinson, N., Soluble inorganic and organic nitrogen in two australian soils under sugarcane cultivation, Agric. Ecosyst. Environ, 2012, vol. 155, pp. 16–26.

    Article  Google Scholar 

  41. Hsieh, M.-Ch., Wei-Po, W., and Lai, L.A., Yu-Chen Lin, Sunlight photolysis mitigates the formation of N-nitrosodimethylamine (NDMA) during the chloramination of methadone, Chem. Engineer. J., 2020, vol. 384, p. 123307.

    Article  Google Scholar 

  42. Hu, L., Yu, J., Hongmei, Luo, H., Wang, H., Xu, P., and Zhang, Y., Simultaneous recovery of ammonium, potassium and magnesium from produced water by struvite precipitation, Chem. Engineer. J., 2020, vol. 382, p. 123001.

    Article  Google Scholar 

  43. Jensen, F.B., Nitrite disrupts multiple physiological functions in aquatic animals, Comp. Biochem. Physiol. Pt A: Mol. Integr. Physiol., 2003. vol. 135, no. 1, pp. 9–24.

    Article  Google Scholar 

  44. Kim, O.K., Park, Y.B., Lee, T.G., Kim, I.S., Kang, J.H., Jun, K.S., Park, D.Ch., and Kim, S.B., Degradation of nitrate as a nitrosamine precursor by brown algae Ecklonia cava, J. Korean Fish, 1996, vol. 29, no. 6, pp. 914–916.

    Google Scholar 

  45. Liu H., Chen Z., Guan Y., Xu S. Role and application of iron in water treatment for nitrogen removal: a review, Chemosphere, 2018, vol. 204, pp. 51–62.

    Article  Google Scholar 

  46. Mollamohammada, S., Hassan, A.A., and Dahab, M., Nitrate removal from groundwater using immobilized heterotrophic algae, Water, Air, & Soil Pollution, 2020, vol. 231.

  47. Mulder, A., The quest for sustainable nitrogen removal technologies, Water Sci. Technol, 2003, vol. 48, no. 1, pp. 67–75.

    Article  Google Scholar 

  48. Naing, N.N., Sze, Chieh Tan S.Ch., and Lee, H.K., 16—Micro-Solid-Phase Extraction. Handbooks in separation science, Amsterdam: Elsevier Inc., 2020.

    Google Scholar 

  49. Nowlin, W.H., Evarts, J.L., and Vanni, M.J., Release rates and potential fates of nitrogen and phosphorus from sediments in a eutrophic reservoir, Freshw. Biol, 2010, vol. 50, pp. 301–322.

    Article  Google Scholar 

  50. Pedemonte, D.C., Frison, N., Taya, C., Ponsa, S., and Fatone, F., Chemical and biological processes for nutrients removal and recovery, Waste Management: Concepts, Methodologies, Tools, and Applications. Hershey, Pennsylvania: IGI Global USA, 2020, pp. 37–48.

    Google Scholar 

  51. Priya, E.R., Ravichandrana, S., Gobinatha, Th., Tilvib, S., and Devib, P.S., Functional characterization of anti-cancer sphingolipids from the marine crab Dromia dehanni, Chem. Phys. Lipids, 2019, vol. 221, pp. 73–82.

    Article  Google Scholar 

  52. Qiu, Y., Bei, E., Wang, Y., Wang, J., Zhang, X., and Chen, Ch., One representative water supply system in China with nitrosamine concern: challenges and treatment strategies, J. Environ. Sci, 2020, vol. 88, pp. 12–20.

    Article  Google Scholar 

  53. Rudneva, I.I., Kuzminova, N.S., and Omelchenko, S.O., Trace elements and nitrosamines concentration in black sea elasmobranch species, Asian J. Biol. Life Sci, 2012, vol. 1, no. 1, pp. 51– 57.

    Google Scholar 

  54. Rudneva, I.I., Melnikova, E.B., and Omelchenko, S.O., Seasonal variations of nitrosamine content in some black sea fish species, Turk. J. of Fish. Aquat. Sci, 2008, vol. 8, no. 2, pp. 283– 287.

    Google Scholar 

  55. Singh, P., Singhb, M.K., Bega, Y.R., and Nisha, G.R., A review on spectroscopic methods for determination of nitrite and nitrate in environmental samples, Talanta, 2019, vol. 191, pp. 364–381.

    Article  Google Scholar 

  56. Stefanakis, A.I. and Becker, J.A., A review of emerging contaminants in water: classification, sources, and potential risks, Waste Management: Concepts, Methodologies, Tools, and Applications. Hershey, Pennsylvania: IGI Global USA, 2020, pp. 26–37.

    Google Scholar 

  57. Verstraete, W., Van de Caveyea, P., and Diamantis, V., Maximum use of resources present in domestic “used “water,” Bioresour. Technol, 2009, vol. 100, pp. 5537–5545.

    Article  Google Scholar 

  58. Wang, Z., Zhang, B., Borthwick, A.G.L., Feng, C., Ni, J., Utilization of single-chamber microbial fuel cells as renewable power sources for electrochemical degradation of nitrogen-containing organic compounds. Chem. Eng. J., 2015. vol. 280. P. 99–105.

    Article  Google Scholar 

  59. Wang, Z., Zheng, J., Tang, J., Wang, X., and Wu, Z., A pilot-scale forward osmosis membrane system for concentrating low-strength municipal wastewater: performance and implications, Scientific Reports, 2016. Article number 21 653.

  60. Wood, M., Kajimura, M., Mommsen, T., and Waish, P., Alkaline tide and nitrogen conservation after feeding in an elas (Squalus acanthias), J. Exp. Biol, 2005, vol. 208, no. 14, pp. 2693–2705.

    Article  Google Scholar 

  61. Yurchenko V.V., Molder U. Volatile N-Nitrosamines in various fish products. Food Chem. 2006. vol. 96, pp. 325–333.

    Article  Google Scholar 

Download references

Funding

The study was carried out on the theme of State Task of Federal Research Center A.O. Kovalevsky Institute of Biology of Southern Seas, Russian Academy of Sciences “Functional, metabolic and toxicological aspects of existence of hydrobionts and their populations in the biotopes with various physico-chemical regimes” (State Registry АААА-А18-118021490093-4).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. I. Rudneva or S. O. Omel’chenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudneva, I.I., Omel’chenko, S.O. Nitrosamines in Aquatic Ecosystems: Sources, Formation, Toxicity, Environmental Risk (Review) 1. Structure, Properties, Ways of Entering and Formation in Waterbodies. Water Resour 48, 92–101 (2021). https://doi.org/10.1134/S0097807821010255

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807821010255

Keywords:

Navigation