Skip to main content
Log in

Indictable Mitigation of Methane Emission Using Some Organic Acids as Additives Towards a Cleaner Ecosystem

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Current study was conducted to figure out the effects of some organic acids as either individually or in combinations at varying levels (Fumaric Acid (Fu), Malic Acid (Ma), Formic Acid (Fo), Fu + Ma, Fu + Fo, Fo + Ma and Fu + Ma + Fo) on volatile fatty acids (VFA) and methane mitigating of some legume forages such as alfalfa (Medicago polymorphia), clover (Trifolium repens) and vetch (Vicia villosa). Graded 100 ml syringes were used in gas production test. Gas volume was measured and sampled at 3, 6, 12, 24, 48, 72 and 96 h of incubation times, headspace produced methane was sampled at 24 h and the VFA profile was assessed at the end of the experiment. Obtained data were analyzed by exploiting SAS package program. Effects of legume forage × organic acid interactions and legume forages on the amounts of gas production determined at different incubation times and the amounts of methane production measured at 24 h of incubation were found significant (p < 0.05, p < 0.01). Simultaneously, increasing Fumaric acid, enhanced Propionic Acid percentage (P > 0.05). Reduction in Acetic Acid percentage was discovered for samples treated with Formic Acid (P < 0.05) but for Butyric Acid samples that treated with Malic Acid showed lower percentage (P < 0.05). As a consequence, the addition of fumaric acid to legume forages was more effective than the other organic acids as either individually or in combinations at varying levels since it was able to increase the amounts of total gas production determined at 24 h and at 96 h, decreased the amount of methane measured at 24 h of incubation. Hence, the fumaric acid could be employed in a nature-friendly and continual way to diminish methane emissions and avoid waste of energy from ruminants thereby improving environmental conditions.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADF:

Acid detergent insoluble fiber

ADL:

Acid detergent lignin

CP:

Crude protein

DM:

Dry matter

EE:

Ether extract

Fo:

Formic acid

Fu:

Fumaric acid

Ma:

Malic acid

ME:

Metabolizable Energy

NDF:

Neutral detergent fiber

OA:

Organic acid

VFA:

Volatile fatty acids

References

  1. Hristov, A.N., Oh, J., Firkins, J.L., Dijkstra, J., Kebreab, E., Waghorn, G., Gerber, P.J.: Special topics—Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 91(11), 5045–5069 (2013). https://doi.org/10.2527/jas.2013-6583

    Article  Google Scholar 

  2. McAllister, T.A., Meale, S.J., Valle, E., Guan, L.L., Zhou, M., Kelly, W.J., Janssen, P.H.: Ruminant nutrition symposium: use of genomics and transcriptomics to identify strategies to lower ruminal methanogenesis. J. Anim. Sci. 93(4), 1431–1449 (2015). https://doi.org/10.2527/jas.2014-8329

    Article  Google Scholar 

  3. Tapio, I., Snelling, T.J., Strozzi, F., Wallace, R.J.: The ruminal microbiome associated with methane emissions from ruminant livestock. J. Anim. Sci. Biotechnol. 8(1), 7 (2017). https://doi.org/10.1186/s40104-017-0141-0

    Article  Google Scholar 

  4. Martin, C., Ferlay, A., Mosoni, P., Rochette, Y., Chilliard, Y., Doreau, M.: Increasing linseed supply in dairy cow diets based on hay or corn silage: effect on enteric methane emission, rumen microbial fermentation, and digestion. J. Dairy Sci. 99(5), 3445–3456 (2016). https://doi.org/10.3168/jds.2015-10110

    Article  Google Scholar 

  5. Ruiz-González, A., Debruyne, S., Jeyanathan, J., Vandaele, L., De Campeneere, S., Fievez, V.: Polyunsaturated fatty acids are less effective to reduce methanogenesis in rumen inoculum from calves exposed to a similar treatment early in life. J. Anim. Sci. 95(10), 4677–4686 (2017). https://doi.org/10.2527/jas2017.1558

    Article  Google Scholar 

  6. Elghandour, M.M.Y., Kholif, A.E., Salem, A.Z.M., De Oca, R.M., Barbabosa, A., Mariezcurrena, M., Olafadehan, O.A.: Addressing sustainable ruminal methane and carbon dioxide emissions of soybean hulls by organic acid salts. J. Clean. Prod. 135, 194–200 (2016). https://doi.org/10.1016/j.jclepro.2016.06.081

    Article  Google Scholar 

  7. Elghandour, M.M.Y., Vázquez, J.C., Salem, A.Z.M., Kholif, A.E., Cipriano, M.M., Camacho, L.M., Márquez, O.: In vitro gas and methane production of two mixed rations influenced by three different cultures of Saccharomyces cerevisiae. J. Appli. Anim. Res. 45(1), 389–395 (2017). https://doi.org/10.1080/09712119.2016.1204304

    Article  Google Scholar 

  8. Kholif, A.E., Elghandour, M.M.Y., Rodríguez, G.B., Olafadehan, O.A., Salem, A.Z.M.: Anaerobic ensiling of raw agricultural waste with a fibrolytic enzyme cocktail as a cleaner and sustainable biological product. J. Clean. Prod. 142, 2649–2655 (2017). https://doi.org/10.1016/j.jclepro.2016.11.012

    Article  Google Scholar 

  9. Hernandez, A., Kholif, A.E., Lugo-Coyote, R., Elghandour, M.M.Y., Cipriano, M., Rodríguez, G.B., Salem, A.Z.M.: The effect of garlic oil, xylanase enzyme and yeast on biomethane and carbon dioxide production from 60-d old Holstein dairy calves fed a high concentrate diet. J. Clean. Prod. 142, 2384–2392 (2017). https://doi.org/10.1016/j.jclepro.2016.11.036

    Article  Google Scholar 

  10. Boussaada, A., Arhab, R., Calabrò, S., Grazioli, R., Ferrara, M., Musco, N., Cutrignelli, M.I.: Effect of Eucalyptus globulus leaves extracts on in vitro rumen fermentation, methanogenesis, degradability and protozoa population. Ann. Anim. Sci. 18(3), 753–767 (2018). https://doi.org/10.2478/aoas-2018-0006

    Article  Google Scholar 

  11. Lee, S.J., Shin, N.H., Jeong, J.S., Kim, E.T., Lee, S.K., Lee, S.S.: Effect of Rhodophyta extracts on in vitro ruminal fermentation characteristics, methanogenesis and microbial populations. Asian-Australas. J. Anim. Sci. 31(1), 54–62 (2018). https://doi.org/10.5713/ajas.17.0620

    Article  Google Scholar 

  12. Chai, W.Z., Van Gelder, A.H., Cone, J.W.: Relationship between gas production and starch degradation in feed samples. Anim. Feed Sci. Technol. 114(1–4), 195–204 (2004). https://doi.org/10.1016/j.anifeedsci.2003.11.014

    Article  Google Scholar 

  13. Adesogan, A.: Improving forage quality and animal performance with fibrolytic enzymes, Florida ruminant nutrition symposium. pp. 91–109 (2005)

  14. Shabat, S.K.B., Sasson, G., Doron-Faigenboim, A., Durman, T., Yaacoby, S., Miller, M.E.B., Mizrahi, I.: Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J. 10(12), 2958–2972 (2016). https://doi.org/10.1038/ismej.2016.62

    Article  Google Scholar 

  15. Li, F.: Metatranscriptomic profiling reveals linkages between the active rumen microbiome and feed efficiency in beef cattle. Appl. Environ. Microbiol. 83(9), e00061-17 (2017). https://doi.org/10.1128/AEM.00061-17

    Article  Google Scholar 

  16. Lei, Y., Hannoufa, A., Prates, L.L., Shi, H., Wang, Y., Biligetu, B., Yu, P.: Effects of TT8 and HB12 silencing on the relations between the molecular structures of alfalfa (Medicago sativa) plants and their nutritional profiles and in vitro gas production. J. Agric. Food Chem. 66(22), 5602–5611 (2018). https://doi.org/10.1021/acs.jafc.8b01573

    Article  Google Scholar 

  17. National Research Council: Nutrient Requirements of Dairy Cattle. National Academies Press, Washington, DC (2001)

    Google Scholar 

  18. Canbolat, Ö., Karaman, Ş.: Comparison of in vitro gas production, organic matter digestibility, relative feed value and metabolizable energy contents of some legume forages. J. Agric. Sci. 15(2), 188–195 (2009)

    Google Scholar 

  19. AOAC.: Official Methods of Analysis of AOAC international, AOAC Internationa, AOAC international, Maryland, USA. (2005)

  20. Van Soest, P.J., Robertson, J.B., Lewis, B.A.: Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in ration to animal nutrition. J. Dairy Sci. 74(10), 3583–3597 (1991). https://doi.org/10.3168/jds.S0022-0302(91)78551-2

    Article  Google Scholar 

  21. EFSA: Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Scientific Opinion on the safety and efficacy of formic acid when used as a technological additive for all animal species. EFSA J. 12(10), 3827 (2014). https://doi.org/10.2903/j.efsa.2014.3827

    Article  Google Scholar 

  22. Bharathidasan, A., Ezhilvalavan, S., Pugazhenthi, T., Balamurugan, R., Valli, C., Karunakaran, R.: The effect of supplemental organic acid on methane reduction to decrease the global warming from dairy cattle. Int. J. Adv. Chem. Sci. Appl. 3(4), 60–64 (2015)

    Google Scholar 

  23. Menke, K.H.: Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28, 7–55 (1988)

    Google Scholar 

  24. Blu, M., Ørskov, E.R.: Comparison of in vitro gas production and nylon bag degradability of roughages in predicting feed intake in cattle. Anim. Feed Sci. Technol. 40(2–3), 109–119 (1993). https://doi.org/10.1016/0377-8401(93)90150-I

    Article  Google Scholar 

  25. Taghizadeh, A., Palangi, V., Safamehr, A.: Determining nutritive values of alfalfa cuts using in situ and gas production techniques. Am. J. Anim. Vet. Sci. 3(3), 121–126 (2008)

    Article  Google Scholar 

  26. Gürsoy, E., Macit, M.: Erzurum ili meralarinda dogal olarak yetisen bazi baklagil yem bitkilerinin in vitro gaz üretim degerlerinin belirlenmesi. Anadolu Tarim Bilimleri Dergisi 30(3), 292 (2015)

    Google Scholar 

  27. Palangi, V.: Effects of Processing Legume Forages with Organic Acids on In Vitro Gas Production, Rumen Fermantation and Methan Production, Animal Science, Ataturk University, Turkey, p. 83 (2019)

  28. Besharati, M., Palangi, V., Niazifar, M., Nemati, Z.: Comparison study of flaxseed, cinnamon and lemon seed essential oils additives on quality and fermentation characteristics of lucerne silage. Acta Agric. Slov. 2(424), 115 (2020). https://doi.org/10.14720/aas.2020.115.2.1483

    Article  Google Scholar 

  29. SAS: Institute Inc. SAS/CONNECT® 9.4 User’s Guide. Fourth Edition. SAS Institute Inc., Cary. NC (2018)

  30. Palangi, V., Macit, M.: In situ crude protein and dry matter ruminal degradability of heat-treated barley. Revue Méd. Vét. 170, 123–128 (2019)

    Google Scholar 

  31. Mahmood Ameen, S.: Potential Nutritive Value and Methane Production of Some Ruminant Feedstuffs from North of Iraq Estimated Using an in vitro Gas Technique, Department of Animal Science, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, p. 75. (2015)

  32. Işik, Y.: Determination of Feed Values of Different Physical Processed Common Vetch Seed (Vicia sativa) by In Vitro Gas Production Technique, Animal Science, Atatürk Üniversitesi Erzurum, p. 62. (2016a)

  33. Işik, Y.: Determination of Micro Nutrient Contents of Pistachio (Pistacia vera L.) Orchards in Şanlıurfa, Engineering Sciences, Harran Üniversity, p. 63 (2016b)

  34. Uslu, O., Kurt, O., Kaya, E., Kamalak, A.: Effect of species on chemical composition, metabolizable energy, organic matter digestibility and methane production of some legume plants grown in Turkey. J. Appl. Anim. Res. 46(1), 1158–1161 (2018). https://doi.org/10.1080/09712119.2018.1480485

    Article  Google Scholar 

  35. Malushi, N., Maia, M.R., Cabrita, A.R., Papa, L., Oliveira, H.M., Fonseca, A.J., Celami, A.: Chemical content and in vitro digestibility of successive cuts o fresh alfalfas and its hay. Albanian J. Agric. Sci. 11–18 (2017)

  36. Du, S., Xu, M., Yao, J.: Relationship between fibre degradation kinetics and chemical composition of forages and by-products in ruminants. J. Appl. Anim. Res. 44(1), 189–193 (2016). https://doi.org/10.1080/09712119.2015.1031767

    Article  Google Scholar 

  37. Heublein, C., Südekum, K.H., Gill, F.L., Dohme-Meier, F., Schori, F.: Using plant wax markers to estimate the diet composition of grazing Holstein dairy cows. J. Dairy Sci. 100(2), 1019–1036 (2017). https://doi.org/10.3168/jds.2016-11494

    Article  Google Scholar 

  38. Güler, A.: The Effect of Probiotics Added to Some Roughages on In Vitro Organic Matter Digestibility and Methane Production, Veterinary Medicine, Harran Üniversity, p. 47 (2016)

  39. Kamalak, A., Canbolat, Ö., Gürbüz, Y., Ozay, O.: Prediction of dry matter intake and dry matter digestibilities of some forages using the gas production technique in sheep. Turk. J. Vet. Anim. Sci. 29(2), 517–523 (2005)

    Google Scholar 

  40. Karabulut, A., Canbolat, O., Kalkan, H., Gurbuzol, F., Sucu, E., Filya, I.: Comparison of in vitro gas production, metabolizable energy, organic matter digestibility and microbial protein production of some legume hays. Asian-Australas. J. Anim. Sci. 20(4), 517–522 (2007). https://doi.org/10.5713/ajas.2007.517

    Article  Google Scholar 

  41. Canbolat, Ö., Kara, H., Filya, İ.: Comparison of in vitro gas production, metabolizable energy, organic matter digestibility and microbial protein production of some legume hays. J. Agric. Fac Bursa Univ. 27(2), 71–81 (2013)

    Google Scholar 

  42. Kara, K., Ozkaya, S., Baytok, E., Guclu, B.K., Aktug, E., Erbas, S.: Effect of phenological stage on nutrient composition, in vitro fermentation and gas production kinetics of Plantago lanceolata herbage. Vet. Med. 63(6), 251–260 (2018). https://doi.org/10.17221/2/2017-VETMED

    Article  Google Scholar 

  43. Kara, K., Özkaya, S., Erbaş, S., Baytok, E.: Effect of dietary formic acid on the in vitro ruminal fermentation parameters of barley-based concentrated mix feed of beef cattle. J. Appl. Anim. Res. 46(1), 178–183 (2018). https://doi.org/10.1080/09712119.2017.1284073

    Article  Google Scholar 

  44. Lima, P.M.T., Moreira, G.D., Sakita, G.Z., Natel, A.S., Mattos, W.T.D., Gimenes, F.M.D.A., Louvandini, H.: Nutritional evaluation of the legume Macrotyloma axillare using in vitro and in vivo bioassays in sheep. J. Anim. Physiol. Anim. Nutr. 102(2), e669–e676 (2018). https://doi.org/10.1111/jpn.12810

    Article  Google Scholar 

  45. Melesse, A., Steingass, H., Schollenberger, M., Holstein, J., Rodehutscord, M.: Nutrient compositions and in vitro methane production profiles of leaves and whole pods of twelve tropical multipurpose tree species cultivated in Ethiopia. Agrofor. Syst. 93(1), 135–147 (2019). https://doi.org/10.1007/s10457-017-0110-9

    Article  Google Scholar 

  46. Kara, K., Aktuğ, E., Çağrı, A., Güçlü, B.K., Baytok, E.: Effect of formic acid on in vitro ruminal fermentation and methane emission. Turk. J. Agric. Food Sci. Technol. 3(11), 856–860 (2015). https://doi.org/10.24925/turjaf.v3i11.856-860.491

    Article  Google Scholar 

  47. Carro, M.D., Ranilla, M.J.: Influence of different concentrations of disodium fumarate on methane production and fermentation of concentrate feeds by rumen micro-organisms in vitro. Br. J. Nutr. 90(3), 617–623 (2003). https://doi.org/10.1079/BJN2003935

    Article  Google Scholar 

  48. Tejido, M.L., Ranilla, M.J., García-Martínez, R., Carro, M.D.: In vitro microbial growth and rumen fermentation of different substrates as affected by the addition of disodium malate. J. Anim. Sci. 81(1), 31–38 (2005). https://doi.org/10.1079/ASC42060031

    Article  Google Scholar 

  49. Partanen, K., Jalava, T.: Effects of some organic acids and salts on microbial fermentation in the digestive tract of piglets estimated using an in vitro gas production technique. Agric. Food Sci. 14(4), 311–324 (2005). https://doi.org/10.2137/145960605775897687

    Article  Google Scholar 

  50. Raftari, M., Jalilian, F.A., Abdulamir, A.S., Son, R., Sekawi, Z., Fatimah, A.B.: Effect of organic acids on Escherichia coli O157: H7 and Staphylococcus aureus contaminated meat. Open Microbiol. J. 3, 121–127 (2009). https://doi.org/10.2174/1874285800903010121

    Article  Google Scholar 

  51. Ojo, V.O.A., Adeyemi, T.A., Adelusi, O.O., Bolarin-Akinwande, O.O., Amodu, J.T.: Chemical composition and in vitro gas production of fruits of four tropical forage species. J. Anim. Prod. Res. 30(1), 60–71 (2018)

    Google Scholar 

  52. Khamoshi, S., Kafilzadeh, F., Jahani-Azizabadi, H., Naseri, V.: Ruminal methane emission, microbial population and fermentation characteristics in sheep as affected by Malva sylvestris leaf extract: in vitro study. Iran. J. Appl. Anim. Sci. 7(2), 259–264 (2017)

    Google Scholar 

  53. Chen, L., Dong, Z., Li, J., Shao, T.: Ensiling characteristics, in vitro rumen fermentation, microbial communities and aerobic stability of low-dry matter silages produced with sweet sorghum and alfalfa mixtures. J. Sci. Food Agric. 99(5), 2140–2151 (2019). https://doi.org/10.1002/jsfa.9406

    Article  Google Scholar 

  54. Garcia, F., Brunetti, M.A., Lucini, E.I., Turcato, S., Moreno, M.V., Frossasco, G., Martinez Ferrer, J.: Essential oils from Argentinean native species reduce in vitro methane production. RIA 44(1), 76–83 (2018)

    Google Scholar 

  55. Hernández-Sánchez, D., Cervantes-Gómez, D., Ramírez-Bribiesca, J.E., Cobos-Peralta, M., Pinto-Ruiz, R., Astigarraga, L., Gere, J.I.: The influence of copper levels on in vitro ruminal fermentation, bacterial growth and methane production. J. Sci. Food Agric. 99(3), 1073–1077 (2019). https://doi.org/10.1002/jsfa.9274

    Article  Google Scholar 

  56. Pirondini, M., Colombini, S., Malagutti, L., Rapetti, L., Galassi, G., Zanchi, R., Crovetto, G.M.: Effects of a selection of additives on in vitro ruminal methanogenesis and in situ and in vivo NDF digestibility. Anim. Sci. J. 86(1), 59–68 (2015). https://doi.org/10.1111/asj.12249

    Article  Google Scholar 

  57. Reis, L.G., Chaves, A.V., Williams, S.R.O., Moate, P.J.: Comparison of enantiomers of organic acids for their effects on methane production in vitro. Anim. Prod. Sci. 54(9), 1345–1349 (2014). https://doi.org/10.1071/AN14199

    Article  Google Scholar 

  58. Kolver, E.S., Aspin, P.W., Jarvis, G.N., Elborough, K.M., Roche, J.R.: Fumarate reduces methane production pasture fermented in continuous culture. Proc N Z Soc Anim Prod 64, 155–159 (2004)

    Google Scholar 

  59. Gunun, P., Gunun, N., Cherdthong, A., Wanapat, M., Polyorach, S., Sirilaophaisan, S., Kang, S.: In vitro rumen fermentation and methane production as affected by rambutan peel powder. J. Appl. Anim. Res. 46(1), 626–631 (2018). https://doi.org/10.1080/09712119.2017.1371608

    Article  Google Scholar 

  60. Toit, C.J.L., van Niekerk, W.A., Meissner, H.H., Erasmus, L.J., Morey, L.: Nutrient composition and in vitro methane production of sub-tropical grass species in transitional rangeland of South Africa. Rangel. J. 40(1), 1–8 (2018). https://doi.org/10.1071/RJ17057

    Article  Google Scholar 

  61. Soliva, C.R., Hindrichsen, I.K., Meile, L., Kreuzer, M., Machmüller, A.: Effects of mixtures of lauric and myristic acid on rumen methanogens and methanogenesis in vitro. Lett. Appl. Microbiol. 37(1), 35–39 (2003). https://doi.org/10.1046/j.1472-765X.2003.01343.x

    Article  Google Scholar 

  62. Sherasia, P.L., Pandya, P.R., Parnerkar, S., Murty, S., Devalia, B.R.: In vitro digestibility and methane production as affected by incorporation of different levels of solid state fermented biomass in total mixed rations. Indian J. Anim. Nutr. 34(4), 420–424 (2017). https://doi.org/10.5958/2231-6744.2017.00067.6

    Article  Google Scholar 

  63. Moss, A.R., Jouany, J.P., Newbold, J.: Methane production by ruminants: its contribution to global warming. Annal. Zootech. 49(3), 231–253 (2000). https://doi.org/10.1051/animres:2000119

    Article  Google Scholar 

  64. Nkrumah, J.D., Okine, E.K., Mathison, G.W., Schmid, K., Li, C., Basarab, J.A., Moore, S.S.: Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. J. Anim. Sci. 84(1), 145–153 (2006). https://doi.org/10.2527/2006.841145x

    Article  Google Scholar 

  65. Danielsson, R., Ramin, M., Bertilsson, J., Lund, P., Huhtanen, P.: Evaluation of a gas in vitro system for predicting methane production in vivo. J. Dairy Sci. 100(11), 8881–8894 (2017). https://doi.org/10.3168/jds.2017-12675

    Article  Google Scholar 

  66. Makkar, H.P.: In vitro screening of feed resources for efficiency of microbial protein synthesis. In: In Vitro Screening of Plant Resources for Extra-Nutritional Attributes in Ruminants: Nuclear and Related Methodologies (pp. 107–144). Springer, Dordrecht (2010). https://doi.org/10.1007/978-90-481-3297-3_7

  67. Burt, S.: Essential oils: their antibacterial properties and potential applications in foods—a review. Int. J. Food Microbiol. 94(3), 223–253 (2004). https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

    Article  Google Scholar 

  68. Newbold, C.J., McIntosh, F.M., Williams, P., Losa, R., Wallace, R.J.: Effects of a specific blend of essential oil compounds on rumen fermentation. Anim. Feed Sci. Technol. 114(1–4), 105–112 (2004). https://doi.org/10.1016/j.anifeedsci.2003.12.006

    Article  Google Scholar 

  69. Gottschalk, G.: Bacterial Metabolism. Springer, Berlin (2012)

    Google Scholar 

Download references

Acknowledgements

This experiment was supported by TÜBİTAK-ARDEB with VHAG-117O524 project. The article was extracted from the Ph.D. thesis prepared by Valiollah Palangi, under supervision of Prof. Dr. Muhlis Macit. The authors wish to express their sincere gratitude to Dr. Sonia Abachi for her valuable cooperation in the English edition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valiollah Palangi.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationship that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palangi, V., Macit, M. Indictable Mitigation of Methane Emission Using Some Organic Acids as Additives Towards a Cleaner Ecosystem. Waste Biomass Valor 12, 4825–4834 (2021). https://doi.org/10.1007/s12649-021-01347-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01347-8

Keywords

Navigation