Skip to main content
Log in

Integrals of Motion in Time-periodic Hamiltonian Systems: The Case of the Mathieu Equation

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We present an algorithm for constructing analytically approximate integrals of motion in simple time-periodic Hamiltonians of the form \(H=H_{0}+\varepsilon H_{i}\), where \(\varepsilon\) is a perturbation parameter. We apply our algorithm in a Hamiltonian system whose dynamics is governed by the Mathieu equation and examine in detail the orbits and their stroboscopic invariant curves for different values of \(\varepsilon\). We find the values of \(\varepsilon_{crit}\) beyond which the orbits escape to infinity and construct integrals which are expressed as series in the perturbation parameter \(\varepsilon\) and converge up to \(\varepsilon_{crit}\). In the absence of resonances the invariant curves are concentric ellipses which are approximated very well by our integrals. Finally, we construct an integral of motion which describes the hyperbolic stroboscopic invariant curve of a resonant case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Contopoulos, G. and Moutsoulas, M., Resonance Cases and Small Divisors in a Third Integral of Motion: 2, Astron. J., 1965, vol. 70, no. 10, pp. 817–835.

    Article  Google Scholar 

  2. Gustavson, F. G., On Constructing Formal Integrals of a Hamiltonian System near an Equilibrium Point, Astron. J., 1966, vol. 71, no. 8, pp. 670–686.

    Article  Google Scholar 

  3. Giorgilli, A., A Computer Program for Integrals of Motion, Comput. Phys. Commun., 1979, vol. 16, no. 3, pp. 331–343.

    Article  Google Scholar 

  4. Efthymiopoulos, Ch. and Sándor, Zs., Optimized Nekhoroshev Stability Estimates for the Trojan Asteroids with a Symplectic Mapping Model of Co-Orbital Motion, Mon. Not. R. Astron. Soc., 2005, vol. 364, no. 1, pp. 253–271.

    Article  Google Scholar 

  5. Contopoulos, G., Adiabatic Invariants and the “Third” Integral, J. Mathematical Phys., 1966, vol. 7, pp. 788–797.

    Article  MathSciNet  Google Scholar 

  6. Markeyev, A. P., Third-Order Resonance in a Hamiltonian System with One Degree of Freedom, J. Appl. Math. Mech., 1994, vol. 58, no. 5, pp. 793–804; see also: Prikl. Mat. Mekh., 1994, vol. 58, no. 5, pp. 37-48.

    Article  MathSciNet  Google Scholar 

  7. Markeev, A. P., Stability of Equilibrium States of Hamiltonian Systems: A Method of Investigation, Mech. Solids, 2004, vol. 39, no. 6, pp. 1–8.

    Google Scholar 

  8. Markeev, A. P., On a Multiple Resonance in Linear Hamiltonian Systems, Dokl. Phys., 2005, vol. 50, no. 5, pp. 278–282; see also: Dokl. Akad. Nauk, 2005, vol. 402, no. 3, pp. 339-343.

    Article  MathSciNet  Google Scholar 

  9. Markeyev, A. P., Multiple Parametric Resonance in Hamiltonian Systems, J. Appl. Math. Mech., 2006, vol. 70, no. 2, pp. 176–194; see also: Prikl. Mat. Mekh., 2006, vol. 70, no. 2, pp. 200-220.

    Article  MathSciNet  Google Scholar 

  10. Markeev, A. P., On the Birkhoff Transformation in the Case of Complete Degeneracy of Quadratic Part of the Hamiltonian, Regul. Chaotic Dyn., 2015, vol. 20, no. 3, pp. 309–316.

    Article  MathSciNet  Google Scholar 

  11. Kholostova, O. V., Non-Linear Oscillations of a Hamiltonian System with One Degree of Freedom and Fourth-Order Resonance, J. Appl. Math. Mech., 1998, vol. 62, no. 6, pp. 883–892; see also: Prikl. Mat. Mekh., 1998, vol. 62, no. 6, pp. 957-967.

    Article  MathSciNet  Google Scholar 

  12. Kholostova, O. V., The Periodic Motions of a Non-Autonomous Hamiltonian System with Two Degrees of Freedom at Parametric Resonance of the Fundamental Type, J. Appl. Math. Mech., 2002, vol. 66, no. 4, pp. 529–538; see also: Prikl. Mat. Mekh., 2002, vol. 66, no. 4, pp. 540-551.

    Article  MathSciNet  Google Scholar 

  13. Kholostova, O. V., Resonant Periodic Motions of Hamiltonian Systems with One Degree of Freedom When the Hamiltonian Is Degenerate, J. Appl. Math. Mech., 2006, vol. 70, no. 4, pp. 516–526; see also: Prikl. Mat. Mekh., 2006, vol. 70, no. 4, pp. 568-580.

    Article  MathSciNet  Google Scholar 

  14. Bardin, B. and Lanchares, V., On the Stability of Periodic Hamiltonian Systems with One Degree of Freedom in the Case of Degeneracy, Regul. Chaotic Dyn., 2015, vol. 20, no. 6, pp. 627–648.

    Article  MathSciNet  Google Scholar 

  15. Bruno, A. D., Normal Form of a Hamiltonian System with a Periodic Perturbation, Comput. Math. Math. Phys., 2020, vol. 60, no. 1, pp. 36–52.

    Article  MathSciNet  Google Scholar 

  16. Bruno, A. D., Normalization of a Periodic Hamiltonian System, Program. Comput. Softw., 2020, vol. 46, no. 2, pp. 76–83.

    Article  MathSciNet  Google Scholar 

  17. Kandrup, H. E. and Drury, J., Chaos in Cosmological Hamiltonians, Ann. N. Y. Acad. Sci., 1998, vol. 867, no. 1, pp. 306–320.

    Google Scholar 

  18. Kandrup, H. E., Vass, I. M., and Sideris, I. V., Transient Chaos and Resonant Phase Mixing in Violent Relaxation, Mon. Not. R. Astron. Soc., 2003, vol. 341, no. 3, pp. 927–936.

    Article  Google Scholar 

  19. Terzić, B. and Kandrup, H. E., Orbital Structure in Oscillating Galactic Potentials, Mon. Not. R. Astron. Soc., 2004, vol. 347, no. 3, pp. 957–967.

    Article  Google Scholar 

  20. Efthymiopoulos, C. and Contopoulos, G., Chaos in Bohmian Quantum Mechanics, J. Phys. A, 2006, vol. 39, no. 8, pp. 1819–1852.

    Article  MathSciNet  Google Scholar 

  21. McLachlan, N. W., Theory and Application of Mathieu Functions, Oxford: Clarendon, 1951.

    Google Scholar 

  22. Richards, J. A., Analysis of Periodically Time-Varying Systems, Berlin: Springer, 1983.

    Book  Google Scholar 

  23. Mathieu, É., Mémoire sur le mouvement vibratoire d’une membrane de forme elliptique, J. Math. Pure Appl., 1868, vol. 13, pp. 137–203.

    MATH  Google Scholar 

  24. Leibscher, M. and Schmidt, B., Quantum Dynamics of a Plane Pendulum, Phys. Rev. A, 2009, vol. 80, no. 1, 012510, 16 pp.

    Article  Google Scholar 

  25. Birkandan, T. and Hortaçsu, M., Examples of Heun and Mathieu Functions As Solutions of Wave Equations in Curved Spaces, J. Phys. A, 2007, vol. 40, no. 5, pp. 1105–1116.

    Article  MathSciNet  Google Scholar 

  26. Fink, J. K., Physical Chemistry in Depth, Berlin: Springer, 2009.

    Book  Google Scholar 

  27. Ruby, L., Applications of the Mathieu Equation, Am. J. Phys., 1996, vol. 64, no. 1, pp. 39–44.

    Article  MathSciNet  Google Scholar 

  28. Contopoulos, G., Resonance Cases and Small Divisors in a Third Integral of Motion: 1, Astronom. J., 1963, vol. 68, pp. 763–779.

    Article  MathSciNet  Google Scholar 

  29. Contopoulos, G., Order and Chaos in Dynamical Astronomy, Berlin: Springer, 2002.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios C. Tzemos.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

MSC2010

70H05, 70H12

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tzemos, A.C., Contopoulos, G. Integrals of Motion in Time-periodic Hamiltonian Systems: The Case of the Mathieu Equation. Regul. Chaot. Dyn. 26, 89–104 (2021). https://doi.org/10.1134/S1560354721010056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354721010056

Keywords

Navigation