Skip to main content
Log in

Vanadium Chloride Impregnated Polyvinyl Alcohol Composite as Efficient Linear, Non-Linear, and Limiting Optical Applications: Microstructure, Electrical, and Optical Properties

  • POLYMERS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

In this research, the solution casting technique has been used to synthesize composite with different weights of VCl3 embedded in polyvinyl alcohol (PVA), in the form of films. X-ray diffraction (XRD) patterns display a broad peak with low intensity of high doping composite films, reflecting an increase in the non-crystallinity and the internal strain. The complex formation between the OH groups and the V3+ ions has been outlined through Fourier transform IR spectroscopy (FTIR). The film’s surface morphology via SEM images shows an increase in the agglomeration with the doping ratio of VCl3. The optical band gap and the width of localized states were changed from 4.86 to 3.03 eV and 0.85 to 2.54 eV. The average refractive index was estimated from band gap energy, as it increased to 2.46 for a composite of high doping ratio (VPVA6). Moreover, the optical susceptibilities χ(1) and χ(3) and the non-linear refractive index n(2) values indicate the possibility of applying this novel composite material on a wide scale of optoelectronic applications. The samples have reduced the power of the two lasers (632.8 and 532 nm) to 25 and 21%. The AC electrical conductivity was increased with doping ratio, and its relation with frequency is following Jounscher’s law. The improved characteristics, optical performance, and low band gap make them promising in UV-protector and linear/non-linear optoelectronic instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. A. Badawi, Appl. Phys. A 126, 335 (2020).

    ADS  Google Scholar 

  2. A. Badawi, S. S. AlHarthi, N. Y. Mostafa, M. G. AlThobaiti, and T. AlTalhi, Appl. Phys. A 125, 858 (2019).

    ADS  Google Scholar 

  3. F. M. Ali, I. M. Ashraf, and S. M. AlQahtani, Phys. B (Amsterdam, Neth.) 527, 24 (2017).

  4. Y. Khairy, H. I. ElSaeedy, M. I. Mohammed, H. Y. Zahran, and I. S. Yahia, Polym. Bull. 2019, 1 (2019).

    Google Scholar 

  5. N. B. Kumar, V. Crasta, and B. M. Praveen, Phys. Res. Int. 2014, 26 (2014).

    Google Scholar 

  6. M. Abdelaziz and M. M. Ghannam, Phys. B (Amsterdam, Neth.) 405, 958 (2010).

  7. E. M. Abdelrazek, I. S. ElAshmawi, and S. Labeeb, Phys. B (Amsterdam, Neth.) 405, 2021 (2010).

  8. A. Hashim and A. Hadi, Sensor Lett. 15, 858 (2017).

    Google Scholar 

  9. M. Bulinski, V. Kuncser, C. Plapcianu, S. Krautwald, H. Franke, P. Rotaru, and G. Filoti, J. Phys. D: Appl. Phys. 37, 2437 (2004).

    ADS  Google Scholar 

  10. S. A. Nouh, A. F. Said, K. Abdel-Megeed, and F. M. Hafez, Rad. Eff. Def. Solids 161, 23 (2006).

    Google Scholar 

  11. I. S. ElAshmawi, E. M. Abdelrazek, A. M. Hezma, and A. Rajeh, Phys. B (Amsterdam, Neth.) 434, 57 (2014).

  12. H. E. Ali and Y. Khairy, Phys. B (Amsterdam, Neth.) 572, 256 (2019).

  13. H. Elhosiny Ali, Y. Khairy, H. Algarni, H. I. ElSaeedy, A. M. AlShehri, H. Alkharis, and I. S. Yahia, Opt. Quantum Electron. 51, 47 (2019).

    Google Scholar 

  14. H. ElHosiny Ali and Y. Khairy, Phys. B (Amsterdam, Neth.) 570, 41 (2019).

  15. Y. Khairy, M. M. Abdel-Aziz, H. Algarni, A. M. Alshehri, and I. S. Yahia, and H. ElHosiny Ali, Mater. Res. Express 6, 115346 (2019).

    ADS  Google Scholar 

  16. N. M. Shash, H. Khoder, F. Metawe, and A. A. Negm, J. Appl. Polymer Sci. 129, 2796 (2013).

    Google Scholar 

  17. T. A. Hanafy, J. Appl. Phys. 112, 034102 (2012).

    ADS  Google Scholar 

  18. T. A. Hamdalla and T. A. Hanafy, Optik 127, 878 (2016).

    ADS  Google Scholar 

  19. S. Mahmoudi and S. Boudjadar, Acta Metall. Sin. (Engl. Lett.) 26, 742 (2013).

  20. R. H. Kretsinger, V. N. Uversky, and E. A. Permyakov, Encyclopedia of Metalloproteins (Springer, New York, 2013). https://doi.org/10.1007/978-1-4614-1533-6

    Book  Google Scholar 

  21. O. Pravakar, T. Siddaiah, P. V. R. K. Ramacharyulu, N. O. Gopal, C. Ramu, and H. Nagabhushana, J. Sci.: Adv. Mater. Dev. 4, 267 (2019).

    Google Scholar 

  22. K. Sreekanth, T. Siddaiah, N. O. Gopal, Y. M. Kumar, and C. Ramu, J. Sci.: Adv. Mater. Dev. 4, 230 (2019).

    Google Scholar 

  23. R. J. Sengwa and S. Choudhary, J. Appl. Polymer Sci. 131, 16 (2014).

    Google Scholar 

  24. F. M. Ali and F. Maiz, Phys. B (Amsterdam, Neth.) 530, 19 (2018).

  25. S. Sreedhanya, N. Smijesh, R. Philip, and C. I. Muneera, J. Mater. Chem. C 1, 3851 (2013).

    Google Scholar 

  26. I. S. Yahia, A. Bouzidi, H. Y. Zahran, W. Jilani, S. AlFaify, H. Algarni, and H. Guermazi, J. Mol. Struct. 1156, 492 (2018).

    ADS  Google Scholar 

  27. Y. Khairy and I. S. Yahia, and H. El Hosiny Ali, J. Mater. Sci.: Mater. Electron. 31, 8072 (2020).

    Google Scholar 

  28. S. F. Bdewi, O. G. Abdullah, B. K. Aziz, and A. A. Mutar, J. Inorg. Organomet. Polym. Mater. 26, 326 (2016).

    Google Scholar 

  29. N. Rajeswari, S. Selvasekarapandian, C. Sanjeeviraja, J. Kawamura, and S. A. Bahadur, Polym. Bull. 71, 1061 (2014).

    Google Scholar 

  30. H. I. ElSaeedy, H. E. Ali, H. Algarni, and I. S. Yahia, Appl. Phys. A 125, 79 (2019).

    ADS  Google Scholar 

  31. I. S. Yahia and S. M. Keshk, Opt. Laser Technol. 90, 197 (2017).

    ADS  Google Scholar 

  32. M. Abdelaziz, Phys. B (Amsterdam, Neth.) 406, 1300 (2011).

  33. F. M. Ali, J. Inorg. Organomet. Polym. Mater. 30, 2418 (2020).

    Google Scholar 

  34. A. M. Albu, I. Maior, C. A. Nicolae, and F. L. Bocãnealã, Electrochim. Acta 211, 911 (2016).

    Google Scholar 

  35. K. K. Kumar, M. Ravi, Y. Pavani, S. Bhavani, A. K. Sharma, and V. N. Rao, Phys. B (Amsterdam, Neth.) 406, 1706 (2011).

  36. R. F. Bhajantri, V. Ravindrachary, A. Harisha, V. Crasta, S. P. Nayak, and B. Poojary, Polymer 47, 3591 (2006).

    Google Scholar 

  37. H. Hashim, M. Abdallh, and E. Yousif, Al-Nahrain J. Sci. 15, 40 (2012).

    Google Scholar 

  38. O. G. Abdullah, S. B. Aziz, and M. A. Rasheed, Res. Phys. 6, 1103 (2016).

    Google Scholar 

  39. F. F. Muhammad, S. B. Aziz, and S. A. Hussein, J. Mater. Sci.: Mater. Electron. 26, 521 (2015).

    Google Scholar 

  40. H. E. Ali, Y. Khairy, H. Algarni, H. I. ElSaeedy, A. M. Alshehri, and I. S. Yahia, J. Mater. Sci.: Mater. Electron. 29, 20424 (2018).

    Google Scholar 

  41. T. A. Hamdalla, T. A. Hanafy, and A. E. Bekheet, J. Spectrosc. 2015, 204867 (2015).

    Google Scholar 

  42. T. S. Moss, Phys. Status Solidi B 131, 415 (1985).

    ADS  Google Scholar 

  43. P. Herve and L. K. Vandamme, J. Infrared Phys. Technol. 35, 609 (1994).

    ADS  Google Scholar 

  44. N. M. Ravindra, S. Anuch, and V. K. Srivastava, Phys. Status Solidi B 93, K115 (1979).

    ADS  Google Scholar 

  45. R. R. Reddy, K. R. Gopal, K. Narasimhulu, L. S. S. Reddy, K. R. Kumar, G. Balakrishnaiah, and M. R. Kumar, J. Alloys Compd. 473, 28 (2009).

    Google Scholar 

  46. V. Kumar and J. K. Singh, Indian J. Pure Appl. Phys. 48, 571 (2010).

    Google Scholar 

  47. M. Anani, C. Mathieu, S. Lebid, Y. Amar, Z. Chama, and H. Abid, J. Comput. Mater. Sci. 41, 570 (2008).

    Google Scholar 

  48. V. R. Shinde, C. D. Lokhande, R. S. Mane, and S.‑H. Han, Appl. Surf. Sci. 245, 407 (2005).

    ADS  Google Scholar 

  49. H. Ahmed, H. M. Abduljalil, and A. Hashim, Trans. Electr. Electron. Mater. 20, 218 (2019).

    Google Scholar 

  50. M. B. Mohamed and M. H. Abdel-Kader, Appl. Phys. A 125, 209 (2019).

    ADS  Google Scholar 

  51. O. G. Abdullah, S. B. Aziz, K. M. Omer, and Y. M. Salih, Mater. Electron. 26, 5303 (2015).

    Google Scholar 

  52. M. Frumar, B. Frumarova, P. Nemec, T. Wagner, J. Jedelsky, and M. Hrdlicka, J. Non-Cryst. Solids 352, 544 (2006).

    ADS  Google Scholar 

  53. M. M. El-Nahass, G. M. Youssef, and S. Z. Noby, J. Alloys Compd. 604, 253 (2014).

    Google Scholar 

  54. H. Ticha and L. Tichy, J. Optoelectron. Adv. Mater. 4, 381 (2002).

    Google Scholar 

  55. V. Ganesh, I. S. Yahia, S. AlFaify, and M. Shkir, J. Phys. Chem. Solids 100, 115 (2017).

    ADS  Google Scholar 

  56. M. M. El-Nahass, H. S. Soliman, B. A. Khalifa, and I. M. Soliman, Mater. Sci. Semicond. Process. 38, 177 (2015).

    Google Scholar 

  57. C. C. Wang, Phys. Rev. B 2, 2045 (1970).

    ADS  Google Scholar 

  58. E. G. El-Metwally, D. A. Nasrallah, and M. Fadel, Mater. Res. Express 6, 085312 (2019).

    ADS  Google Scholar 

  59. M. Shkir, V. Ganesh, S. AlFaify, I. S. Yahia, and H. Y. Zahran, J. Mater. Sci.: Mater. Electron. 29, 6446 (2018).

    Google Scholar 

  60. M. Shkir, M. T. Khan, V. Ganesh, I. S. Yahia, B. U. Haq, A. Almohammedi, and S. AlFaify, Opt. Laser Technol. 108, 609 (2018).

    ADS  Google Scholar 

  61. M. M. Abutalib and I. S. Yahia, J. Mater. Sci.: Mater. Electron. 29, 19798 (2018).

    Google Scholar 

  62. A. Tataroglu, Ş. Altındal, and M. M. Bülbül, Microelectron. Eng. 81, 140 (2005).

    Google Scholar 

  63. S. Choudhary, Polym. Compos. 39, E1788 (2018).

    Google Scholar 

  64. R. C. Smith, C. Liang, M. Landry, J. K. Nelson, and L. S. Schadler, IEEE Trans. Dielectr. Electr. Insul. 15, 187 (2008).

    Google Scholar 

  65. S. Choudhary and R. J. Sengwa, J. Inorg. Organomet. Polym. Mater. 29, 592 (2019).

    Google Scholar 

  66. F. D. C. Fim, N. R. Basso, A. P. Graebin, D. S. Azambuja, and G. B. Galland, J. Appl. Polymer Sci. 128, 2630 (2013).

    Google Scholar 

  67. I. S. Yahia and M. I. Mohammed, J. Mater. Sci.: Mater. Electron. 29, 8555 (2018).

    Google Scholar 

  68. R. Kandulna, R. B. Choudhary, R. Singh, and B. Purty, J. Mater. Sci.: Mater. Electron. 29, 5893 (2018).

    Google Scholar 

Download references

Funding

The authors express their appreciation to the Deanship of Scientific Research at King Khalid University, Saudia Arabia, for funding this work through research groups program under grant number R.G.P.-217-41.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. El Hosiny Ali.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, H.E., Khairy, Y., Yahia, I.S. et al. Vanadium Chloride Impregnated Polyvinyl Alcohol Composite as Efficient Linear, Non-Linear, and Limiting Optical Applications: Microstructure, Electrical, and Optical Properties. Phys. Solid State 63, 165–182 (2021). https://doi.org/10.1134/S1063783421010091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421010091

Keywords:

Navigation