Skip to main content
Log in

Structure–Energy Regularities of Accumulation of Damages during Deformation of a Heterogeneous Material

  • MECHANICAL PROPERTIES, PHYSICS OF STRENGTH, AND PLASTICITY
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The accumulation of defects during uniaxial compression of a natural heterogeneous material has been studied experimentally. The defect formation process has been controlled using two methods of nondestructive testing: acoustic emission (AE) and X-ray computer tomography (CT). Simultaneous use of these methods makes it possible to establish the correspondence between the energy characteristics of AE that accompanies the defect formation and the volume of these defects. It is found that the dependence of the defect volume on the summary energy of the AE signals is linear, which corresponds to the phenomenological dependences obtained for the tectonic earthquake focuses before. The linear dependence is used to estimate the average defect size. It is shown that the average linear defect size is not larger than 100 μm independent of the assumptions on the defect shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. T. H. W. Goebel, T. W. Becker, D. Schorlemmer, S. Stanchits, C. Sammis, E. Rybacki, and G. Dresen, J. Geophys. Res. 117, B03310 (2012).

    Article  ADS  Google Scholar 

  2. V. I. Vettegren’, V. S. Kuksenko, and I. P. Shcherbakov, Tech. Phys. 58, 136 (2013).

    Article  Google Scholar 

  3. A. S. Voznesenskii, M. N. Krasilov, Ya. O. Kutkin, M. N. Tavostin, and Yu. V. Osipov, Int. J. Fatigue 97, 70 (2017).

    Article  Google Scholar 

  4. Acoustic, Electromagnetic, Neutron Emissions from Fracture and Earthquake, Ed. by A. Carpinteri, G. Lacidogna, and A. Manuello (Springer, Switzerland, 2015).

    Google Scholar 

  5. A. G. Vostretsov, G. I. Kulakov, A. A. Bizyaev, and G. E. Yakovitskaya, J. Mining Sci. 53, 1152 (2017).

    Article  Google Scholar 

  6. V. N. Oparin, G. E. Yakovitskaya, A. G. Vostretsov, V. M. Seryakov, and A. V. Krivetsky, J. Mining Sci. 49, 343 (2013).

    Article  Google Scholar 

  7. L. Wu and J. Wang, J. Mining Sci. 35, 969 (1998).

    Google Scholar 

  8. L. Ma and H. Sun, Infrared Phys. Technol. 3, 144 (2018).

    Article  ADS  Google Scholar 

  9. L. Phono, Eng. Fract. Mech. 35, 291 (1990).

    Article  Google Scholar 

  10. H. Sun, X. L. Liu, S. G. Zhang, and K. Nawnit, Eng. Fract. Mech. 226, 106845 (2020).

    Article  Google Scholar 

  11. K. Zhao, X. Yu, Y. Zhou, Q. Wang, J. Wang, and J. Hao, Int. J. Rock Mech. Mining Sci. 132, 104392 (2020).

    Article  Google Scholar 

  12. F. Gao, H. Kang, and L. Yang, Sci. Rep. 10, 13422 (2020).

    Article  ADS  Google Scholar 

  13. S. Luo and F. Gong, Eng. Fract. Mech. 234, 107102 (2020).

    Article  Google Scholar 

  14. K. Peng, Sh. Shi, Q. Zou, J. Mou, J. Yu, Y. Zhang, and Y. Cheng, Energy Sci. Eng. (2020). https://doi.org/10.1002/ese3.738

  15. S. G. Shah and J. M. Chandra Kishen, Eng. Fract. Mech. 87, 36 (2012).

    Article  Google Scholar 

  16. S. Yuyama, Z.-W. Li, M. Yoshizawa, T. Tomokiyo, and T. Uomoto, NDT Int. 34, 381 (2001).

    Article  Google Scholar 

  17. Y. Seo and Y. Richard Kim, KSCE J. Civil Eng. 12, 237 (2008).

    Article  Google Scholar 

  18. X. Lei and Sh. Ma, Earthquake Sci. 27, 627 (2014).

    Article  ADS  Google Scholar 

  19. J. Zhang, Shock Vibrat. 2018, 3057628 (2018).

    Google Scholar 

  20. L. R. Botvina, Fiz. Zemli, No. 10, 5 (2011).

    Google Scholar 

  21. L. R. Botvina, Destruction: Kinetics, Mechanisms, General Laws (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  22. P. Churcher, P. French, and J. Shaw, in Proceedings of the SPE International Symposium on Oilfield Chemistry, SPE-21044-MS (1991).

  23. T. Toth and R. Hudak, Acta Mech. Slov. 17 (4), 40 (2013).

    Article  Google Scholar 

  24. E. Damaskinskaya, D. Frolov, D. Gafurova, D. Korost, and I. Panteleev, Interpretation 5 (4), SP1 (2017).

    Article  Google Scholar 

  25. E. E. Damaskinskaya, I. A. Panteleev, D. R. Gafurova, and D. I. Frolov, Phys. Solid State 60, 1363 (2018).

    Article  ADS  Google Scholar 

  26. E. E. Damaskinskaya, V. L. Hilarov, I. A. Panteleev, D. R. Gafurova, and D. I. Frolov, Phys. Solid State 60, 1821 (2018).

    Article  ADS  Google Scholar 

  27. E. Damaskinskaya, V. Hilarov, I. Panteleev, D. Korost, and D. Frolov, in Proceedings in Earth and Environmental Sciences, 5th International Conference on Trigger Effects in Geosystems, Moscow, Russia, June 4–7, 2019 (Springer, 2019), p. 23.

  28. M. A. Sadovskii, Dokl. Akad. Nauk SSSR 275, 1087 (1984).

    Google Scholar 

  29. L. R. Botvina, A. P. Soldatenkov, and M. R. Tyutin, Dokl. Earth Sci. 446, 1127 (2012).

    Article  ADS  Google Scholar 

  30. M. V. M. S. Rao and K. J. Prasanna Lakshmi, Curr. Sci. 89, 1577 (2005).

    Google Scholar 

  31. S. Colombo, I. G. Main, and M. C. Forde, J. Mater. Civil Eng. 15, 280 (2003).

    Article  Google Scholar 

  32. A. Carpinteri, G. Lacidogna, and S. Puzzi, Chaos Solitons Fractals 41, 843 (2009).

    Article  ADS  Google Scholar 

  33. S. Hirose and J. Achenbach, Eng. Fract. Mech. 39, 21 (1991).

    Article  Google Scholar 

  34. O. Y. Andreykiv, M. V. Lysak, O. M. Serhiyenko, and V. R. Skalsky, Eng. Fract. Mech. 68, 1317 (2001).

    Article  Google Scholar 

  35. M. Lysak, Eng. Fract. Mech. 55, 443 (1996).

    Article  Google Scholar 

  36. A. Bizzarri, Rev. Geophys. 49, RG3002 (2007). https://doi.org/10.1029/2011RG000356

    Article  ADS  Google Scholar 

  37. T. G. Rautian, V. I. Khalturin, K. Fujita, K. G. Mackey, and M. L. Nichols, Seismol. Res. Lett. 78, 579 (2007).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-05-00248.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Damaskinskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damaskinskaya, E.E., Panteleev, I.A., Korost, D.V. et al. Structure–Energy Regularities of Accumulation of Damages during Deformation of a Heterogeneous Material. Phys. Solid State 63, 101–106 (2021). https://doi.org/10.1134/S1063783421010066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421010066

Keywords:

Navigation