Skip to main content
Log in

Magnetic States of Fe2+ Ions in FexMn1 – xS Induced by Chemical Pressure

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Influence of the chemical pressure (x) in single crystals of FexMn1 – xS (0.12 ≤ x ≤ 0.29) on the spin state of iron ions was studied by Mössbauer spectroscopy in the temperature range from 4.2 to 300 K. Peculiarities of formation of the paramagnetic and antiferromagnetic phases of solid solutions were found. Substitution of Fe2+ cations in the high-spin state for Mn2+ was found to occur in FexMn1 – xS as x changes. A decrease in the distance between the ions in FexMn1 – xS induces changes in the state of the Fe2+ ions in the samples with x = 0.25 and 0.29. The asymmetry parameter of the electric field gradient (EFG) tensor and the angle between the directions of the magnetic moment and the principal axis of the electric field gradient were found to change in the magnetically ordered phase at 4.2 K; the angle between the magnetic moment and the electric field gradient axis changes from 21° in the sample with x = 0.12 to 33° when x = 0.29.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. Kunes, A. V. Lukoyanov, V. I. Anisimov, R. T. Scalettar, and W. E. Pickett, Nat. Mater. 7, 198 (2008).

    Article  ADS  Google Scholar 

  2. S. G. Ovchinnikov, JETP Lett. 94, 192 (2011).

    Article  ADS  Google Scholar 

  3. Y. Mita, M. Kobayashi, S. Endo, and S. Mochizuki, J. Magn. Magn. Mater. 272–276, 428 (2004).

    Google Scholar 

  4. Y. Wang, L. Bai, T. Wen, L. Yang, H. Gou, Y. Xiao, P. Chow, M. Pravica, W. Yang, and Y. Zhao, Angew. Chem. Int. Ed. 55, 10350 (2016).

    Article  Google Scholar 

  5. G. M. Abramova, A. Hanzawa, T. Kagayama, Y. Mita, E. M. Eremin, G. M. Zeer, S. M. Zharkov, and S. G. Ovchinnikov, J. Magn. Magn. Mater. 465, 775 (2018).

    Article  ADS  Google Scholar 

  6. R. J. Pollard, V. H. McCann, and J. B. Ward, J. Phys. C 16, 345 (1983).

    Article  ADS  Google Scholar 

  7. R. J. Pollard, Mössbauer Spectroscopy of Some Magnetic Materials (Univ. of Canterbury, 1982).

    Google Scholar 

  8. G. Abramova, J. Schefer, N. Aliouane, M. Boehm, G. Petrakovskiy, A. Vorotynov, M. Gorev, A. Bovina, and V. Sokolov, J. Alloys Compd. 632, 562 (2015).

    Article  Google Scholar 

  9. G. Abramova, M. Boehm, J. Schefer, A. Piovano, G. Zeer, S. Zharkov, Y. Mita, and V. Sokolov, JETP Lett. 106, 498 (2017).

    Article  ADS  Google Scholar 

  10. G. Abramova, N. Volkov, G. Petrakovskiy, V. Sokolov, M. Boehm, O. Bayukov, A. Vorotynov, A. Bovina, and A. Pischjugin, J. Magn. Magn. Mater. 320, 3261 (2008).

    Article  ADS  Google Scholar 

  11. Yu. V. Knyazev, A. S. Tarasov, M. S. Platunov, A. L. Trigub, O. A. Bayukov, A. I. Boronin, L. A. Solovyov, E. V. Rabchevskii, N. N. Shishkina, and A. G. Anshits, J. Alloys Compd. 820, 153073 (2020).

    Article  Google Scholar 

  12. M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1489, 178 (2012).

    Article  ADS  Google Scholar 

  13. I. Kantor, L. Dubrovinsky, C. McCammon, G. Steinle-Neumann, A. Kantor, N. Skorodumova, S. Pascarelli, and G. Aquilanti, Phys. Rev. B 80, 014204 (2009).

    Article  ADS  Google Scholar 

  14. C. A. McCammon and D. C. Price, Phys. Chem. Miner. C 250, 254 (1985).

    Google Scholar 

  15. R. J. Radwanski and Z. Ropka, arXiv:cond-mat/0010032v1 [condmat. str-el] (2000).

  16. F. J. Berry, Chemical Bonding and Spectroscopy in Mineral Chemistry (Chapman and Hall, London, New York, 1985).

    Book  Google Scholar 

  17. G. M. Abramova, N. V. Volkov, G. A. Petrakovskioe, Y. Mita, O. A. Bayukov, D. A. Velikanov, A. M. Vorotynov, V. V. Sokolov, and A. F. Bovina, JETP Lett. 86, 371 (2007).

    Article  ADS  Google Scholar 

  18. Z. Ropka and R. J. Radwanski, Phys. Status Solidi A 196, 275 (2003). https://doi.org/10.1002/pssa.200306405

    Article  ADS  Google Scholar 

  19. L. Aldon and J.-C. Jumas, Solid State Sci. 14, 354 (2012).

    Article  ADS  Google Scholar 

  20. A. Tomas, L. Brossard, J. L. Dormann, and M. Guittard, J. Magn. Magn. Mater. 31, 755 (1983).

    Article  ADS  Google Scholar 

  21. S. Steger and V. Yu. Pomjakushin, VP Report (2008).

  22. H. van der Heide, C. F. van Bruggen, G. A. Wiegers, and C. Haas, J. Phys. C 16, 855 (1983).

    Article  ADS  Google Scholar 

  23. S. Ivascu, A. S. Gruia, and N. M. Avram, Phys. B (Amsterdam, Neth.) 450, 146 (2014). https://doi.org/10.1016/j.physb.2014.05.065

  24. M. Kobayashi, T. Nakai, S. Mochizuki, and N. Takayama, J. Phys. Chem. Solids 56, 341 (1995).

    Article  ADS  Google Scholar 

  25. H. Komura, J. Phys. Soc. Jpn. 26, 1446 (1969).

    Article  ADS  Google Scholar 

Download references

Funding

The work was partially supported by the Ministry of Science and Higher Education of the Russian Federation (state contract in the sphere of scientific activities, Southern Federal University, 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Abramova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Efimov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramova, G.M., Knyazev, Y.V., Bayukov, O.A. et al. Magnetic States of Fe2+ Ions in FexMn1 – xS Induced by Chemical Pressure. Phys. Solid State 63, 68–74 (2021). https://doi.org/10.1134/S1063783421010029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421010029

Keywords:

Navigation