Skip to main content
Log in

Basic Structural Units of Tilt Grain Boundaries. II. Misorientation Axes [110] and [111]

  • METALS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The computer simulation methods have been applied to calculate structure and energy of symmetric tilt grain boundaries (GB) with the misorientation axes [110] and [111]. The calculations have been carried out with the use of the structural-vacancy model. The study of the atomic structure has been carried out within the entire range of misorientation angles. The reverse density of coincidence sites in special grain boundaries has amounted Σ ≤ 57. The calculations have been carried out with the use of the Morse pair potential and the Cleri-Rosato many-body potential. When calculated with different potentials, the dependence of GB energy on the misorientation angle has a similar form, and the atomic structure completely coincides. It has been shown that the structure of any GB with the misorientation axes [110] and [111] may be represented by a limited number of basic structural units. All found basic structural units defined as units of A, B, C and D types are based on the structures of special grain boundaries. Such special GBs shall be Σ3(111), Σ3(112), Σ11(113) and Σ9(114) for GBs with the misorientation axis [110], and as regarding GBs with the misorientation axis [111], such special GBs shall be Σ3(112), Σ7(123) and Σ13(134). Ranges of angles within which certain basic structural units are found have been defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. A. V. Weckman and B. F. Dem’yanov, Phys. Met. Metallogr. 120, 50 (2019).

    Article  ADS  Google Scholar 

  2. G. H. Bishop and B. Chalmers, Scr. Met. 2, 133 (1968).

    Article  Google Scholar 

  3. A. P. Sutton and V. Vitek, Phil. Trans. R. Soc. London, Ser. A 309, 1 (1983).

    Article  ADS  Google Scholar 

  4. J. D. Rittner and D. N. Seidman, Phys. Rev. B 54, 6999 (1996).

    Article  ADS  Google Scholar 

  5. O. H. Duparc, J.-Ph. Couzinie, J. Thibault-Penisson, S. Lartigue-Korinek, B. Decamps, and L. Priester, Acta Mater. 55, 1791 (2007).

    Article  ADS  Google Scholar 

  6. A. V. Weckman and B. F. Dem’yanov, Fundam. Probl. Sovrem. Materialoved. 14, 480 (2017).

    Google Scholar 

  7. G. J. Wang, A. P. Sutton, and V. Vitek, Acta Met. 32, 1093 (1984).

    Article  Google Scholar 

  8. D. Wolf, J. Mater. Res. 5, 1708 (1990).

    Article  ADS  Google Scholar 

  9. D. Wolf, Acla Met. 37, 1983 (1989).

    Article  Google Scholar 

  10. D. Wolf, Philos. Mag. A 62, 447 (1990).

    Article  ADS  Google Scholar 

  11. D. Wolf, Acta Met. Mater. 38, 781 (1990).

    Article  Google Scholar 

  12. J. J. Bean and K. P. McKenna, Acta Mater. 110, 246 (2016).

    Article  ADS  Google Scholar 

  13. E. R. Homer, S. M. Foiles, E. A. Holm, and D. L. Olmsted, Acta Mater. 61, 1048 (2013).

    Article  ADS  Google Scholar 

  14. P. Deymier, A. Taiwo, and G. Kalonji, Acta Met. 35, 2719 (1987).

    Article  Google Scholar 

  15. A. Suzuki and Y. Mishin, Interface Sci. 11, 131 (2003).

    Article  Google Scholar 

  16. A. V. Weckman and B. F. Dem’yanov, Phys. Solid State 62 (2020, in press).

  17. A. S. Dragunov, B. F. Dem’yanov, and A. V. Weckman, Izv. Vyssh. Uchebn. Zaved., Fiz. 53 (3-2), 82 (2010).

  18. A. S. Dragunov, A. V. Weckman, and B. F. Dem’yanov, Polzunov. Al’manakh, No. 4-1, 29 (2011).

  19. A. V. Weckman, Extended Abstract of Cand. Sci. Dissertation (Barnaul, 2000).

  20. A. V. Weckman, B. F. Demyanov, and A. S. Dragunov, Phys. Met. Metallogr. 116, 586 (2015).

    Article  ADS  Google Scholar 

  21. P. M. Morse, Phys. Rev. 34, 57 (1929).

    Article  ADS  Google Scholar 

  22. F. Cleri and V. Rosato, Phys. Rev. B 48, 22 (1993).

    Article  ADS  Google Scholar 

  23. A. I. Tsaregorodtsev, N. V. Gorlov, B. F. Dem’yanov, and M. D. Starostenkov, Fiz. Met. Metalloved. 58, 336 (1984).

    Google Scholar 

  24. A. V. Weckman, A. S. Dragunov, N. V. Adarich, and B. F. Dem’yanov, Polzunov. Al’manakh, No. 3, 49 (2008).

    Google Scholar 

  25. A. V. Weckman, A. S. Dragunov, B. F. Dem’yanov, and N. V. Adarich, Russ. Phys. J. 55, 799 (2012).

    Article  Google Scholar 

  26. J. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1967).

    MATH  Google Scholar 

  27. M. A. Tschopp and D. L. Mcdowell, Philos. Mag. 87, 3871 (2007).

    Article  ADS  Google Scholar 

  28. A. V. Weckman, B. F. Dem’yanov, and A. S. Dragunov, Izv. AltGU, No. 1 (99), 11 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Weckman.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Petrov

Part 1. FTT 62. No. 12. P. 1997.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weckman, A.V., Dem’yanov, B.F. Basic Structural Units of Tilt Grain Boundaries. II. Misorientation Axes [110] and [111]. Phys. Solid State 63, 54–63 (2021). https://doi.org/10.1134/S1063783421010224

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421010224

Keywords:

Navigation