Skip to main content
Log in

Temperature Dependence of Autowave Characteristics of Localized Plasticity

  • METALS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The behavior of localized plastic flow autowaves in a Fe–Ni–Cr alloy at temperatures 143 K ≤ T ≤ 420 K is considered. The temperature variation of the autowave propagation velocity is studied. It is found that, for the region of low temperatures, the autowave velocity is inversely proportional to the work hardening coefficient and the quadratic dispersion law takes place. The elastoplastic strain invariant does not depend on temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. L. B. Zuev and S. A. Barannikova, Crystals 9, 458 (2019).

    Article  Google Scholar 

  2. L. B. Zuev, Autowave Plasticity. Localization and Collective Modes (Fizmatlit, Moscow, 2019; CRC, Boca Raton, FL, 2020).

  3. L. B. Zuev and S. A. Barannikova, Tech. Phys. 65, 741 (2020).

    Article  Google Scholar 

  4. R. E. Newnham, Properties of Materials (Oxford Univ. Press, Oxford, 2005).

    Google Scholar 

  5. R. J. Asaro and V. A. Lubarda, Mechanics of Solids and Materials (Cambridge Univ. Press, Cambridge, 2006).

    Book  Google Scholar 

  6. R. Jones and C. Wykes, Holographic and Speckle Interferometry (Cambridge Univ. Press, Cambridge, 2012).

    Google Scholar 

  7. H. B. Huntington, The Elastic Constants of Crystals (Academic, New York, 1958).

    Book  Google Scholar 

  8. E. Scott, Nonlinear Science. Emergence and Dynamics of Coherent Structures (Oxford Univ. Press, Oxford, 2003).

    MATH  Google Scholar 

  9. D. Caillard and J. L. Martin, Thermally Activated Mechanisms in Crystal Plasticity (Elsevier, Oxford, 2003).

    Google Scholar 

  10. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Fizmatlit, Moscow, 2001; Pergamon, New York, 1987).

  11. A. H. Cottrell, Dislocations and Plastic Flow in Crystals (Clarendon, Oxford, 1953).

    MATH  Google Scholar 

  12. A. Argon, Strengthening Mechanisms in Crystal Plasticity (Oxford Univ. Press, Oxford, 2008).

    Google Scholar 

  13. V. I. Al’shits and V. L. Indenbom, in Dislocations in Crystals, Ed. by F. R. N. Nabarro (North-Holland, Amsterdam, 1986), Vol. 7, p. 43.

    Google Scholar 

  14. D. Blaschke, E. Motolla, and D. L. Preston, Philos. Mag. 100, 571 (2020).

    Article  ADS  Google Scholar 

  15. J. M. Ziman, Electrons and Phonons (Oxford Univ. Press, Oxford, 2001).

    Book  Google Scholar 

  16. J. Talonen, P. Nenonen, G. Pape, and H. Hänninen, Met. Mater. Trans. A 36, 421 (2005).

    Article  Google Scholar 

  17. M. Wilkens, Phys. Status Solidi A 2, 359 (1970).

    Article  ADS  Google Scholar 

  18. D. Caillard, Acta Mater. 58, 3493 (2010).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.I. Danilov for useful advises on the technique of low-temperature mechanical tests.

Funding

This work was carried out within the framework of the state contract for the Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences (project III.23.1.2) and supported in part by the Russian Foundation for Basic Research, project no. 20-08-00305/20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Zuev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuev, L.B., Barannikova, S.A., Kolosov, S.V. et al. Temperature Dependence of Autowave Characteristics of Localized Plasticity. Phys. Solid State 63, 47–53 (2021). https://doi.org/10.1134/S1063783421010236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421010236

Keywords:

Navigation