Skip to main content
Log in

Mehler reaction plays a role in C3 and C4 photosynthesis under shade and low CO2

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Alternative electron fluxes such as the cyclic electron flux (CEF) around photosystem I (PSI) and Mehler reaction (Me) are essential for efficient photosynthesis because they generate additional ATP and protect both photosystems against photoinhibition. The capacity for Me can be estimated by measuring O2 exchange rate under varying irradiance and CO2 concentration. In this study, mass spectrometric measurements of O2 exchange were made using leaves of representative species of C3 and C4 grasses grown under natural light (control; PAR ~ 800 µmol quanta m−2 s−1) and shade (~ 300 µmol quanta m−2 s−1), and in representative species of gymnosperm, liverwort and fern grown under natural light. For all control grown plants measured at high CO2, O2 uptake rates were similar between the light and dark, and the ratio of Rubisco oxygenation to carboxylation (Vo/Vc) was low, which suggests little potential for Me, and that O2 uptake was mainly due to photorespiration or mitochondrial respiration under these conditions. Low CO2 stimulated O2 uptake in the light, Vo/Vc and Me in all species. The C3 species had similar Vo/Vc, but Me was highest in the grass and lowest in the fern. Among the C4 grasses, shade increased O2 uptake in the light, Vo/Vc and the assimilation quotient (AQ), particularly at low CO2, whilst Me was only substantial at low CO2 where it may contribute 20–50% of maximum electron flow under high light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alboresi A, Storti M, Morosinotto T (2019) Balancing protection and efficiency in the regulation of photosynthetic electron transport across plant evolution. N Phytol 221(1):105–109

    Article  CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Asada K (2000) The water–water cycle as alternative photon and electron sinks. Philos Trans R Soc B 355(1402):1419–1431

    Article  CAS  Google Scholar 

  • Avelange MH, Thiéry JM, Sarrey F, Gans P, Rébeillé F (1991) Mass-spectrometric determination of O2 and CO2 gas exchange in illuminated higher-plant cells. Evidence for light-inhibition of substrate decarboxylations. Planta 183(2):150–157

    CAS  PubMed  Google Scholar 

  • Avenson TJ, Cruz JA, Kanazawa A, Kramer DM (2005) Regulating the proton budget of higher plant photosynthesis. Proc Natl Acad Sci USA 102:9709–9713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azcón-Bieto J, Farquhar GD, Caballero A (1981) Effects of temperature, oxygen concentration, leaf age and seasonal variations on the CO2 compensation point of Lolium perenne L. Planta 152(6):497–504

    Article  PubMed  Google Scholar 

  • Badger MR (1985) Photosynthetic oxygen exchange. Annu Rev Plant Physiol 36(1):27–53

    Article  CAS  Google Scholar 

  • Badger MR, von Caemmerer S, Ruuska S, Nakano H (2000) Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and Rubisco oxygenase. Philos Trans R Soc B 355(1402):1433–1446

    Article  CAS  Google Scholar 

  • Bartoli CG, Gomez F, Gergoff G, Guiamét JJ, Puntarulo S (2005) Up-regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions. J Exp Bot 56(415):1269–1276

    Article  CAS  PubMed  Google Scholar 

  • Biehler K, Fock H (2016) Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat. Plant Physiol 112(1):265–272

    Article  Google Scholar 

  • Bloom AJ, Caldwell RM, Finazzo J, Warner RL, Weissbart J (1989) Oxygen and carbon dioxide fluxes from barley shoots depend on nitrate assimilation. Plant Physiol 91(1):352–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloom AJ, Smart DR, Nguyen DT, Searles PS (2002) Nitrogen assimilation and growth of wheat under elevated carbon dioxide. Proc Natl Acad Sci USA 99(3):1730–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canvin DT, Berry JA, Badger MR, Fock H, Osmond CB (1980) Oxygen exchange in leaves in the light. Plant Physiol 66(2):302–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casano LM, Zapata JM, Martín M, Sabater B (2000) Chlororespiration and poising of cyclic electron transport. Plastoquinone as electron transporter between thylakoid NADH dehydrogenase and peroxidase. J Biol Chem 275(2):942–948

    Article  CAS  PubMed  Google Scholar 

  • Cramer WA, Soriano GM, Ponomarev M, Huang D, Zhang H, Martinez SE, Smith JL (2002) Some new structural aspects and old controversies concerning the cytochrome b6f complex of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47(1):477–508

    Article  Google Scholar 

  • Demmig-Adams B, Adams WW III (1996) Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta 198:460–470

    Article  CAS  Google Scholar 

  • Evans J (2006) Acclimation by the thylakoid membranes to growth irradiance and the partitioning of nitrogen between soluble and thylakoid proteins. Funct Plant Biol 15(2):93

    Article  Google Scholar 

  • Flexas J, Ortuño MF, Ribas-Carbo M, Diaz-Espejo A, Flórez-Sarasa ID, Medrano H (2007) Mesophyll conductance to CO2 in Arabidopsis thaliana. N Phytol 175(3):501–511

    Article  CAS  Google Scholar 

  • Furbank R, Jenkins C, Hatch M (1990) C4 photosynthesis: quantum requirement, C4 and overcycling and Q-cycle involvement. Aust J Plant Physiol 17(1):1–7

    CAS  Google Scholar 

  • Furbank RT, Badger MR, Osmond CB (1983) Photoreduction of oxygen in mesophyll chloroplasts of C4 plants: a model system for studying an in vivo Mehler reaction. Plant Physiol 73(4):1038–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerst ANJ (1995) Coupled cyclic electron transport in intact chloroplasts and leaves of C3 plants: does it exist? If so, what is its function? Photosynth Res 46:269–275

    Article  PubMed  Google Scholar 

  • Guy RD, Fogel ML, Berry JA (2016) Photosynthetic fractionation of the stable isotopes of oxygen and carbon. Plant Physiol 101(1):37–47

    Article  Google Scholar 

  • Hanawa H, Ishizaki K, Nohira K, Takagi D, Shimakawa G, Sejima T et al (2017) Land plants drive photorespiration as higher electron-sink: comparative study of post-illumination transient O2-uptake rates from liverworts to angiosperms through ferns and gymnosperms. Physiol Plant 161(1):138–149

    Article  CAS  PubMed  Google Scholar 

  • Harbinson J, Hedley CL (1993) Changes in P-700 oxidation during the early stages of the induction of photosynthesis. Plant Physiol 103(2):649–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heber U (2002) Irrungen, Wirrungen? The Mehler reaction in relation to cyclic electron transport in C3 plants. Photosynth Res 73:223–231

    Article  CAS  PubMed  Google Scholar 

  • Heber U, Walker D (2008) Concerning a dual function of coupled cyclic electron transport in leaves. Plant Physiol 100(4):1621–1626

    Article  Google Scholar 

  • Henderson S, von Caemmerer S, Farquhar G (1992) Short-term measurements of carbon isotope discrimination in several C4 species. Funct Plant Biol 19(3):263

    Article  CAS  Google Scholar 

  • Kiirats O (2002) Bundle sheath diffusive resistance to CO2 and effectiveness of C4 photosynthesis and refixation of photorespired CO2 in a C4 cycle mutant and wild-type Amaranthus edulis. Plant Physiol 130(2):964–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kok B (1948) A critical consideration of the quantum yield of Chlorella-photosynthesis. Enzymologia (Hague) 13(1):1–56

    CAS  Google Scholar 

  • Laisk A, Edwards GE (1998) Oxygen and electron flow in C4 photosynthesis: Mehler reaction, photorespiration and CO2 concentration in the bundle sheath. Planta 205(4):632–645

    Article  CAS  Google Scholar 

  • Laisk A, Eichelmann H, Oja V, Peterson RB (2005) Control of cytochrome b6f at low and high light intensity and cyclic electron transport in leaves. BBA Bioenerg 1708(1):79–90

    Article  CAS  Google Scholar 

  • Laisk A, Eichelmann H, Oja V, Rasulov B, Rämma H (2006) Photosystem II cycle and alternative electron flow in leaves. Plant Cell Physiol 47(7):972–983

    Article  CAS  PubMed  Google Scholar 

  • Makino A, Miyake C, Yokota A (2002) Physiological functions of the water–water cycle (Mehler reaction) and the cyclic electron flow around PSI in rice leaves. Plant Cell Physiol 43(9):1017–1026

    Article  CAS  PubMed  Google Scholar 

  • Maroco J, Ku M, Lea P, Dever L, Leegood R, Furbank R, Edwards G (1998) Oxygen requirement and inhibition of C4 photosynthesis. An analysis of C4 plants deficient in the C3 and C4 cycles. Plant Physiol 116(2):823–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maroco JP, Ku MSB, Edwards GE (1997) Oxygen sensitivity of C4 photosynthesis: evidence from gas exchange and chlorophyll fluorescence analyses with different C4 subtypes. Plant Cell Environ 20:1525–1533

    Article  CAS  Google Scholar 

  • Maxwell K, Badger MR, Osmond CB (1998a) A comparison of CO2 and O2 exchange patterns and the relationship with chlorophyll fluorescence during photosynthesis in C3 and CAM plants. Aust J Plant Physiol 27(6):645

    Google Scholar 

  • Maxwell K, Badger MR, Osmond CB (1998b) A comparison of CO2 and O2 exchange patterns and the relationship with chlorophyll fluorescence during photosynthesis in C3 and CAM plants. Aust J Plant Physiol 27(6):45–52

    Google Scholar 

  • McDonald AE, Ivanov AG, Bode R, Maxwell DP, Rodermel SR, Hüner NPA (2011) Flexibility in photosynthetic electron transport: the physiological role of plastoquinol terminal oxidase (PTOX). BBA Bioenerg 1807(8):954–967

    Article  CAS  Google Scholar 

  • Miyake C, Okamura M (2003) Cyclic electron flow within PSII protects PSII from its photoinhibition in thylakoid membranes from spinach chloroplasts. Plant Cell Physiol 44(4):457–462

    Article  CAS  PubMed  Google Scholar 

  • Miyake C, Shinzaki Y, Miyata M, Tomizawa K-I (2004) Enhancement of cyclic electron flow around PSI at high light and its contribution to the induction of non-photochemical quenching of Chl fluorescence in intact leaves of tobacco plants. Plant Cell Physiol 45:1426–1433

    Article  CAS  PubMed  Google Scholar 

  • Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125(4):1558–1566

    Article  PubMed  PubMed Central  Google Scholar 

  • Myers J (1949) The pattern of photosynthesis in Chlorella. In: Franck J, Loomis WE (eds) Photosynthesis in plants. Iowa State College Press, Ames

    Google Scholar 

  • Niyogi KK (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10(7):1121–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peltier G, Thibault P (1985) O2 uptake in the light in Chlamydomonas: evidence for persistent mitochondrial respiration. Plant Physiol 79(1):225–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peltier G, Cournac L (2002) Chlororespiration. Annu Rev Plant Biol 53(1):523–550

    Article  CAS  PubMed  Google Scholar 

  • Priault P, Tcherkez G, Cornic G, De Paepe R, Naik R, Ghashghaie J, Streb P (2006) The lack of mitochondrial complex I in a CMSII mutant of Nicotiana sylvestris increases photorespiration through an increased internal resistance to CO2 diffusion. J Exp Bot 57(12):3195–3207

    Article  CAS  PubMed  Google Scholar 

  • Quiles MJ (2006) Stimulation of chlororespiration by heat and high light intensity in oat plants. Plant Cell Environ 29(8):1463–1470

    Article  CAS  PubMed  Google Scholar 

  • Raghavendra AS, Padmasree K (2003) Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Trends Plant Sci 8(11):546–553

    Article  CAS  PubMed  Google Scholar 

  • Renou J-L, Gerbaud A, Just D, Andrc M (1990) Differing substomatal and chloroplastic CO2 concentrations in water-stressed wheat. Planta 182:415–434

    Article  CAS  PubMed  Google Scholar 

  • Rumberg B, Schubert K, Strelow F, Tran-Anh T (2013). The H+/ATP coupling ratio at the H+-ATP-synthase of spinach chloroplasts is four. In: Current research in photosynthesis. Springer, Dordrecht

  • Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30(9):1041–1051

    Article  CAS  PubMed  Google Scholar 

  • Ruuska SA, Badger MR, Andrews TJ, von Caemmerer S (2000) Photosynthetic electron sinks in transgenic tobacco with reduced amounts of Rubisco: little evidence for significant Mehler reaction. J Exp Bot 51:357–368

    Article  CAS  PubMed  Google Scholar 

  • Sagun JV, Badger MR, Chow WS, Ghannoum O (2019) Cyclic electron flow and light partitioning between the two photosystems in leaves of plants with different functional types. Photosynth Res 142(3):321–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sejima T, Hanawa H, Shimakawa G, Takagi D, Suzuki Y, Fukayama H et al (2016) Post-illumination transient O2-uptake is driven by photorespiration in tobacco leaves. Physiol Plant 156(2):227–238

    Article  CAS  PubMed  Google Scholar 

  • Shikanai T, Takeda T, Yamauchi H, Sano S, Tomizawa KI, Yokota A, Shigeoka S (1998) Inhibition of ascorbate peroxidase under oxidative stress in tobacco having bacterial catalase in chloroplasts. FEBS Lett 428(1–2):47–51

    Article  CAS  PubMed  Google Scholar 

  • Shimakawa G, Ishizaki K, Tsukamoto S, Tanaka M, Sejima T, Miyake C (2017a) The liverwort, Marchantia, drives alternative electron flow using a flavodiiron protein to protect PSI. Plant Physiol 173(3):1636–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimakawa G, Matsuda Y, Nakajima K, Tamoi M, Shigeoka S, Miyake C (2017b) Diverse strategies of O2 usage for preventing photo-oxidative damage under CO2 limitation during algal photosynthesis. Sci Rep 7(1):41022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirao M, Kuroki S, Kaneko K, Kinjo Y, Tsuyama M, Förster B et al (2013) Gymnosperms have increased capacity for electron leakage to oxygen (Mehler and PTOX reactions) in photosynthesis compared with angiosperms. Plant Cell Physiol 54(7):1152–1163

    Article  CAS  PubMed  Google Scholar 

  • Siebke K, Ghannoum O, Conroy JP, Badger MR, von Caemmerer S (2003) Photosynthetic oxygen exchange in C4 oxygen as electron acceptor grasses: the role of oxygen as electron acceptor. Plant Cell Environ 26:1963–1972

    Article  CAS  Google Scholar 

  • Sonawane BV, Sharwood RE, Whitney S, Ghannoum O (2018) Shade compromises the photosynthetic efficiency of NADP-ME less than that of PEP-CK and NAD-ME C4 grasses. J Exp Bot 69(12):3053–3068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suorsa M, Järvi S, Grieco M, Nurmi M, Pietrzykowska M, Rantala M, Kangasjärvi S, Paakkarinen V, Tikkanen M, Jansson S, Aro EM (2012) PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions. Plant Cell 24:2934–2948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi D, Ishizaki K, Hanawa H, Mabuchi T, Shimakawa G, Yamamoto H, Miyake C (2017) Diversity of strategies for escaping reactive oxygen species production within photosystem I among land plants: P700 oxidation system is prerequisite for alleviating photoinhibition in photosystem I. Physiol Plant 161(1):56–74

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Bauwe H, Badger M (2007) Impairment of the photorespiratory pathway accelerates photoinhibition of photosystem II by suppression of repair but not acceleration of damage processes in Arabidopsis. Plant Physiol 144(1):487–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tcherkez G, Gauthier P, Buckley TN, Busch FA, Barbour MM, Bruhn D et al (2017) Leaf day respiration: low CO2 flux but high significance for metabolism and carbon balance. N Phytol 216(4):986–1001

    Article  CAS  Google Scholar 

  • Tsuyama M, Kobayashi Y (2009) Reduction of the primary donor P700 of photosystem I during steady-state photosynthesis under low light in Arabidopsis. Photosynth Res 99(1):37–47

    Article  CAS  PubMed  Google Scholar 

  • Turpin DH, Elrifi IR, Birch DG, Weger HG, Holmes JJ (1988) Interactions between photosynthesis, respiration, and nitrogen assimilation in microalgae. Can J Bot 66(10):2083–2097

    Article  CAS  Google Scholar 

  • von Ballmoos C, Cook GM, Dimroth P (2008) Unique ATP synthase and its biological diversity. Annu Rev Biophys 37:43–64

    Article  CAS  Google Scholar 

  • Van Lis R, Atteia A (2004) Control of mitochondrial function via photosynthetic redox signals. Photosynth Res 79(2):133–148

    Article  PubMed  Google Scholar 

  • Vetoshkina DV, Ivanov BN, Khorobrykh SA, Proskuryakov II, Borisova-Mubarakshina MM (2017) Involvement of the chloroplast plastoquinone pool in the Mehler reaction. Physiol Plant 161(1):45–55

    Article  CAS  PubMed  Google Scholar 

  • von Caemmerer S (2000) Biochemical models of leaf photosynthesis. Tech Plant Sci 53(9):1689–1699

    Google Scholar 

  • von Caemmerer S, Evans JR, Hudson GS, Andrews TJ (1994) The kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco. Planta 195(1):88–97

    Article  Google Scholar 

  • von Caemmerer S, Furbank RT (1999) Modeling C4 photosynthesis. In: Monson RK (ed) C4 plant biology. Academic, San Diego

    Google Scholar 

  • von Caemmerer S, Quick WP (2006) Rubisco: physiology in vivo. In: Leegood rc, Sharkey TD, von Caemmerer S (eds) Photosynthesis. Advances in photosynthesis and respiration, vol 9. Springer, Dordrecht

    Google Scholar 

  • Walker BJ, Strand DD, Kramer DM, Cousins AB (2014) The response of cyclic electron flow around Photosystem I to changes in photorespiration and nitrate assimilation. Plant Physiol 165(1):453–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelm C, Selmar D (2011) Energy dissipation is an essential mechanism to sustain the viability of plants: the physiological limits of improved photosynthesis. J Plant Physiol 168(2):79–87

    Article  CAS  PubMed  Google Scholar 

  • Xue X, Gauthier DA, Turpin DH, Weger HG (2016) Interactions between photosynthesis and respiration in the green alga Chlamydomonas reinhardtii (characterization of light-enhanced dark respiration). Plant Physiol 112(3):1005–1014

    Article  Google Scholar 

  • Yin X, Struik PC (2018) The energy budget in C4 photosynthesis: insights from a cell-type-specific electron transport model. N Phytol 218(3):986–998

    Article  CAS  Google Scholar 

  • Yin X, Sun Z, Struik PC, Gu J (2011) Evaluating a new method to estimate the rate of leaf respiration in the light by analysis of combined gas exchange and chlorophyll fluorescence measurements. J Exp Bot 62(10):3489–3499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida K, Watanabe CK, Hachiya T, Tholen D, Shibata M, Terashima I, Noguchi K (2011) Distinct responses of the mitochondrial respiratory chain to long- and short-term high-light environments in Arabidopsis thaliana. Plant Cell Environ 34(4):618–628

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the Australian Research Council Centre of Excellence for Translational Photosynthesis (CE140100015) awarded to OG and MRB. JVS gratefully acknowledges the award of a Higher Degree Research Scholarship funded through the Centre of Excellence for Translational Photosynthesis and Western Sydney University.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived the research plans; JVS performed the experiments under BMR and CWS supervision; JVS and OG wrote the article with contribution from other authors.

Corresponding author

Correspondence to Oula Ghannoum.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(DOCX 1428 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagun, J.V., Badger, M.R., Chow, W.S. et al. Mehler reaction plays a role in C3 and C4 photosynthesis under shade and low CO2. Photosynth Res 149, 171–185 (2021). https://doi.org/10.1007/s11120-021-00819-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-021-00819-1

Keywords

Navigation