Skip to main content

Advertisement

Log in

Geochemical constrains on pyroxenites from Aniyapuram Mafic–Ultramafic Complex, Cauvery Suture Zone, southern India: Suprasubduction zone origin

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The Aniyapuram Mafic and Ultramafic Complex (AMUC) is a dismembered ophiolite of Neoarchean to Paleoproterozoic age, exposed in south-central part of the Cauvery Suture Zone (CSZ), Southern Granulite Terrane (SGT), India. The complex comprises ultramafic rocks like serpentinized peridotites of harzburgite variety and pyroxenites of websterite variety along with metagabbros, amphibolites, plagiogranites and metacherts. The pyroxenites in the complex occur in the form of dykes, veins and lenses in association with serpentinized peridotites and metagabbros. The chemical compositions of olivine from the peridotites show a moderate forsterite content (Fo88–87) and spinels are enriched in aluminum (Al2O3 > 60 wt%) with depletion of Cr contents (Cr# < 0.5). The pyroxenites are composed of orthopyroxenes with dominance of clinopyroxene and sulphide occurrences (up to 62 wt% S) along the grain boundaries of pyroxenes. The whole rock geochemistry of these pyoxenites shows enrichment of LILE and depletion of HFSE with negative Nb anomalies on N-MORB and primitive normalization. The mineral chemistry of clinopyroxenes from the pyroxenites shows tholeiitic in nature with high Mg# ratios [Mg/(Mg + Fe) = 0.70–0.88]. These mineral chemistry results together with whole rock chemistry reveal their origin in Island arc setting of supra-subduction zone (SSZ) tectonics possibly evolved by the interaction of subduction derived fluids of host serpentinized peridotites. The estimated two-pyroxene thermobarometry of these pyroxenites represents varied re-equilibrium temperatures of 820–980°C and medium to slightly high pressures of 10–12 kbar. With the available age relationship from the complex, the study supports as a strong evidence for the occurrence of Neoarchean to Paleoproterozoic suprasubduction tectonics and associated lithologies of formation in the terrane.

Highlights

  • The ultramafic rocks of Aniyapuram Mafic-Ultramafic Complex (AMUC) from the Cauvery Suture Zone include peridotites of harzburgite variety and pyroxenites of websterite variety.

  • The peridotites contain aluminum rich spinels with low Cr# values.

  • The whole rock and mineral chemistry of pyroxenites represent their origin in Island arc setting of suprasubduction zone tectonics.

  • The estimated two-pyroxene thermobarometry of pyroxenites represents re-equilibrium temperatures of 820–980°C and 10–12 kbar pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Abdallah S E, Ali S and Obeid M A 2019 Geochemistry of an Alaskan-type mafic–ultramafic complex in Eastern Desert, Egypt: New insights and constraints on the Neoproterozoic island arc magmatism; Geosci. Front. 10 941–955.

    Article  Google Scholar 

  • Allegre C J and Turcotte D L 1986 Implications of a two-component marble cake mantle; Nature 323 123–127.

    Article  Google Scholar 

  • Aoki K I and Kushiro I 1968 Some clinopyroxenes from ultramafic inclusions in Dreiser Weiher, Eifel; Contrib. Mineral. Petrol. 18 326–337.

    Article  Google Scholar 

  • Arculus R J and Wills K J A 1980 The petrology of plutonic blocks and inclusions from the Lesser Antilles island arc; J. Petrol. 21 743–799.

    Article  Google Scholar 

  • Asthana D 1991 Relict clinopyroxenes from within-plate metadolerites of the Petroi metabasalt, the New England fold belt, Australia; Mineral. Mag. 55 549–561.

    Article  Google Scholar 

  • Ballhaus C, Berry R F and Green D H 1991 High-pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer-implications for the oxidation-state of the upper mantle; Contrib. Mineral. Petrol. 107 27–40.

    Article  Google Scholar 

  • Balaram V and Rao T G 2003 Rapid determination of REEs and other trace elements in geological samples by microwave acid digestion and ICP-MS; Atom. Spectrosc. 24 206–212.

    Google Scholar 

  • Beccaluva L, Macciotta G, Piccardo G B and Zeda O 1989 Clinopyroxene composition of ophiolitic basalts as petrogenetic indicators; Chem. Geol. 77 165–182.

    Article  Google Scholar 

  • Belousov I A, Batanova V G and Savelieva G N 2009 Evidence for the suprasubduction origin of mantle section rocks of Voykar ophiolite, Polar Urals; Doklady Earth Sci. 429(8) 1394–1398.

    Article  Google Scholar 

  • Berly T J, Hermann J, Arculus R J and Lapierre H 2006 Suprasubduction zone pyroxenites from San Jorge and Santa Isabel (Solomon Islands); J. Petrol. 47(8) 1531–1555.

    Article  Google Scholar 

  • Bissainte M, Hernandez J, Semet M P and Boudon G 1993 Al-bearing parageneses in the lavas and cumulates from the Monts Caraibes (South Guadeloupe-West Indies); Abstract IAVCEI 1993, In: Ancient volcanism and modern analogues, General Assembly Canberra, Australia, 10p.

  • Boudier F and Nicolas A 1985 Harzburgite and lherzolite sub-types in ophiolitic and oceanic environments; Earth Planet. Sci. Lett. 76 84–92.

    Google Scholar 

  • Brey G and Köhler T 1990 Geothermobarometry in four-phase lherzolites II, New thermobarometers, and practical assessment of existing thermobarometers; J. Petrol. 31(6) 1353–1378.

    Article  Google Scholar 

  • Chetty T R K, Yellappa T and Santosh M 2016 Crustal architecture and tectonic evolution of the Cauvery suture zone, southern India; J. Asian Earth Sci. 130 166–191.

    Article  Google Scholar 

  • Chetty T R K 2017 Proterozoic Orogens of India: A critical window to Gondwana; Elsevier Publications.

  • Chum C and Malpas J 2012 The Origins of suprasubduction zone pyroxenites in Troodos ophiolite, Cyprus; American Geophysical Union, Fall Meeting 2012, Abstract Id: V43A-2819.

  • Coogan L A, Saunders A D and Wilson R N 2014 Aluminum-in-olivine thermometry of primitive basalts: Evidence of an anomalously hot mantle source for large igneous provinces; Chem. Geol. 368 1–10.

    Article  Google Scholar 

  • Coleman R G 1977 Ophioliles: Ancient Oceanic Lithosphere? Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Collins A S, Clark C and Plavsa D 2014 Peninsular India in Gondwana: The tectonothermal evolution of the southern granulite terrane and its Gondwana counter parts; Gondwana Res. 25 190–203.

  • DeBari S M and Coleman R G 1989 Examination of the deep levels of an island arc: Evidence from the Tonsina ultramafic–mafic assemblage, Tonsina, Alaska; J. Geophys. Res. 94(B4) 4373–4391.

    Article  Google Scholar 

  • Delavari M, Amini S, Saccani E and Beccaluva L 2009 Geochemistry and petrogenesis of mantle peridotites from the Nehabandan ophiolitic complex, eastern Iran; J. Appl. Sci. 9 2671–2687.

    Article  Google Scholar 

  • Della-Pasqua F N, Kamenestsky V S, Gasparon M, Crawford A J and Varne R 1995 Al-spinels in primitive arc volanics; Mineral. Petrol. 53 1–26.

    Article  Google Scholar 

  • Den Tex E 1969 Origin of ultramafic rocks their tectonic setting and history: A contribution to the discussion of the paper; In: The Origin of Ultramafic and Ultrabasic Rocks (ed.) Wyllie P J, Tectonophys. 7 457–488.

  • Dewey J F and Bird G N 1971 Origin and emplacement of the ophiolite suite: Appalachian ophiolites in Newfoundland; J. Geophys. Res. 76 3179–3206.

    Article  Google Scholar 

  • Dick H J B and Sinton J M 1979 Compositional layering in Alpine peridotites: Evidence for pressure solution creep in the mantle; J. Geol. 87 403–416.

    Article  Google Scholar 

  • Dick H J B and Bullen T 1984 Chrome spinel as petrogenetic indicator in abyssal and alpine type peridotites and spatially associated lavas; Contrib. Mineral. Petrol. 86 54–76.

    Article  Google Scholar 

  • Dilek Y and Newcomb S 2003 Ophiolite concept and the evolution of geological thought. Geol. Soc. Am. Spec. Paper 373.

    Book  Google Scholar 

  • Dilek Y and Furnes H 2011 Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere; Geol. Soc. Am. Bull. 123 387–411.

    Article  Google Scholar 

  • Dowens H 2005 Origin and significance of spinel and garnet pyroxenites in the shallow lithospheric mantle in western Europe and NW Africa; Ofioliti 30(2) 165–166.

    Google Scholar 

  • Drury S A and Holt R W 1980 The tectonic framework of the south Indian craton: A reconnaissance involving LANDSAT imagery; Tectonophys. 65 T1–T5.

    Article  Google Scholar 

  • Dutta D, Bhui U K, Sengupta P, Sanyal S and Mukhopadhyay D 2011 Magmatic and metamorphic imprints in 2.9 Ga chromitites from the Sittampundi layered complex, Tamil Nadu, India; Ore Geol. Rev. 40 90–107.

    Article  Google Scholar 

  • Ernst W G 1978 Petrochemical study of lherzolitic rocks from the western Alps; J. Petrol. 19(3) 341–392.

    Article  Google Scholar 

  • Fabriès J, Lorand J P, Bodinier J L and Dupuy C 1991 Evolution of the upper mantle beneath the Pyrenees: Evidence from orogenic spinel lherzolite massifs; J. Petrol. (Spec. Vol.) 2 55–77.

    Article  Google Scholar 

  • Gaggero L and Cortesogno L 1997 Metamorphic evolution of oceanic gabbros: Recrystallization from solidus to hydrothermal conditions in the MARK area (ODP Leg 153); Lithos 40 105–131.

    Article  Google Scholar 

  • Garrido C J and Bodinier J L 1999 Diversity of mafic rocks in the Ronda peridotite: Evidence for pervasive melt-rock reaction during heating of sub-continental lithosphere by upwelling asthenosphere; J. Petrol. 40(5) 729–754.

    Article  Google Scholar 

  • Ghosh J G, Maarten De wit R E and Zartman R E 2004 Age and tectonic evolution of Neoproterozoic ductile shear zones in the Southern Granulite Terrane of India, with implications for Gondwana studies; Tectonics 23 TC3006.

  • Gopalakrishnan K 1994 An overview of southern granulites terrain of Tamil Nadu: Constraints in reconstruction of Precambrian assembly of Gondwanaland; In: Gondwana 9th Int. Gondwana Symp., Oxford & IBH Publications Co. Ltd. 2 1003–1026.

  • Green D H and Ringwood A E 1967 The stability fields of aluminous pyroxene peridotite and garnet peridotite composite and their relevance in upper mantle structure; Earth Planet. Sci. Lett. 3 151–160.

    Google Scholar 

  • GSI (Geological Survey of India) 1995 Geological Map of Kerala, Tamil Nadu and Pondicherry on 1: 500000 scale, Geological Survey of India, Calcutta.

    Google Scholar 

  • GSI (Geological Survey of India) 2006 Geology and mineral resources of states of India, Tamil Nadu and Pondicherry; Geol. Surv. India, Misc. Publ., No 30.

  • Himmelberg G R and Loney R A 1995 Characteristics and petrogenesis of Alaskan-type ultramafic–mafic intrusions, southeastern Alaska; U.S. Geol. Surv. Prof. Paper 1564.

    Google Scholar 

  • Hirschmann M and Stolper E M 1996 A possible role for garnet pyroxenite in the origin of the garnet signature in MORB; Contrib. Mineral. Petrol. 124 185–208.

    Article  Google Scholar 

  • Hajialioghli R and Moazzen M 2014 Supra-subduction and mid-ocean ridge peridotites from the Piranshahr area NW Iran; J. Geodyn. 81 41–55.

    Article  Google Scholar 

  • Ishimaru S, Arai S, Ishida Y, Shirasaka M and Okrugin V M 2007 Melting and multi-stage metasomatism in the mantle wedge beneath a frontal arc inferred from highly depleted peridotite xenoliths from the Avacha volcano, southern Kamchatka; J. Petrol. 48 395–433.

    Article  Google Scholar 

  • Jan M Q and Howie R A 1981 The mineralogy and geochemistry of the metamorphosed basic and ultrabasic rocks of the Jijal Complex, Kohistan, NW Pakistan; J. Petrol. 22(1) 85–126.

    Article  Google Scholar 

  • Jan M Q and Windley B F 1990 Chrome spinel silicate chemistry in ultramafic rocks of the Jijal complex, Northwest Pakistan; J. Petrol. 31 667–715.

    Article  Google Scholar 

  • Janardhan A S, Jayananda M and Sahnakara M A 1994 Formation and tectonic evolution of granulites from the Biligiri Rangan and Nilgiri Hills, south India: Geochemical and isotopic constraints; J. Geol. Soc. India 44 27–40.

    Google Scholar 

  • Kausar A B, Picard C and Guillot S 1998 Evidence for high-temperature-pressure crystallization during early magmatism of the Kohistan arc, Northern Pakistan; In: Proceedings of the 13th HKT International Workshop; Geol. Bull. Univ. Peshawar, Spec. Issue 31 91–93.

  • Khedr and Arai 2010 Hydrous peridotites with Ti-rich chromian spinel as a low-temperature forearc mantle facies: Evidence from the Happo-O’ne metaperidotites (Japan); Contrib. Mineral. Petrol. 159 137–157.

    Article  Google Scholar 

  • Koloskov A V and Zharinov S E 1993 Multivariate statistical analysis of clinopyroxene compositions from mafic and ultramafic xenoliths in volcanic rocks; J. Petrol. 34 173–185.

    Article  Google Scholar 

  • Kornprobst J, Piboule M, Roden M and Tabit A 1990 Corundum-bearing garnet clinopyroxenites at Beni-Bousera (Morocco) ço-original plagioclase-rich gabbros recrystallized at depth within the mantle; J. Petrol. 31 717–745.

    Article  Google Scholar 

  • Koizumi T, Tsunogae T, Santosh M and Chetty T R K 2014 Petrology and zircon U–Pb geochronology of metagabbros from a mafic–ultramafic suite at Aniyapuram: Neoarchean to Early-Paleoproterozoic convergent margin magmatism and Middle-Neoproterozoic high-grade metamorphism in southern India; J. Asian Earth Sci. 95 51–64.

    Article  Google Scholar 

  • Kubo K 2002 Dunite formation processes in highly depleted peridotite: Case study of the Iwanaidake peridotite, Hokkaido, Japan; J. Petrol. 43 423–448.

    Article  Google Scholar 

  • Leake B E 1978 The chemical distinction between ortho- and para-amphibolites; J. Petrol. 5 238–254.

    Article  Google Scholar 

  • Le Bas M J 1962 The role of aluminum in igneous clinopyroxenes with relation to their parentage; Am. J. Sci. 260 267–288.

    Article  Google Scholar 

  • Leterrier J, Maury R C, Thonon P, Girard D and Marehal M 1982 Clinopyroxene composition as a method of identification of the magmatic affinities of paleovolcanic series; Earth Planet. Sci. Lett. 59 139–154.

    Google Scholar 

  • McInnes B I A, Gregoire M, Binns R A, Herzig P M and Hannington M D 2001 Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea: Petrology and geochemistry of fluid-metasomatised mantle wedge xenoliths; Earth Planet. Sci. Lett. 188 169–183.

    Google Scholar 

  • Merle R, Kaczmarek M A, Elodie Tronche E and Girardeau J 2012 Occurrence of inherited suprasubduction zone mantle in the oceanic lithosphere as inferred from mantle xenoliths from Dragon Seamount (southern Tore–Madeira Rise); J. Geol. Soc. London 169 251–267.

    Article  Google Scholar 

  • Morimoto N, Fabries J, Ferguson A K, Ginzburg I V, Ross M, Seifert F A, Zussman J, Aoki K and Gottardi G 1988 Nomenclature of pyroxenes; Am. Mineral. 73 1123–1133.

    Google Scholar 

  • Murthy S R N 1979 Petrology of ultramafic rocks of the Chalk Hills, Salem, Tamil Nadu; Rec. Geol. Surv. India 112(5) 15–35.

    Google Scholar 

  • Nimis P and Ulmer P 1998 Clinopyroxene geobarometry of magmatic rocks. Part 1: An expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems. Contrib. Mineral. Petrol. 133 122–135.

    Article  Google Scholar 

  • Nishimiya Y, Tsunogae T and Santosh M 2010 Sapphirine + quartz corona around magnesian (XMg ∼ 0.58) staurolite from the Palghat–Cauvery suture zone, southern India: Evidence for high-pressure and ultrahigh-temperature metamorphism within the Gondwana suture; Lithos 114 490–502.

  • Noack N M, Kleinschrodta R, Kirchenbaura M, Fonsecab R O C and Munker C 2013 Lu–Hf isotope evidence for Paleoproterozoic metamorphism and deformation of Archean oceanic crust along the Dharwar craton margin, southern India; Precamb. Res. 233 206–222.

    Article  Google Scholar 

  • Obata M 1977 Petrology and petrogenesis of the Ronda high-temperature peridotite intrusion, southern Spain; Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge MA, USA, 247p.

  • Parkinson I J and Pearce J A 1998 Peridotites from the Izu–Bonin–Mariana fore arc (ODP Leg 125): Evidence for mantle melting and melt-mantle interaction in a suprasubduction zone setting; J. Petrol. 39 1577–1618.

    Google Scholar 

  • Pearce J A, Lippard L S and Roberts S 1984 Characteristics and tectonic significance of suprasubduction zone ophiolites; Geol. Soc. London, Spec. Publ. 16 77–94.

    Article  Google Scholar 

  • Pearson D G, Davies G R and Nixon P H 1993 Geochemical constraints on the petrogenesis of diamond facies pyroxenites from the Beni Bousera peridotite massif, North Morocco; J. Petrol. 34 125–172.

    Article  Google Scholar 

  • Piccoli F, Hermann J, Pettke T, Connolly J A D, Kempf E D and Duarte J F V 2019 Subducting serpentinites release reduced, not oxidized, aqueous fluids; Nature Scientific Reports 9 19573.

    Article  Google Scholar 

  • Plavsa D, Collins A S, Payne J L, Foden J D, Clark C and Santosh M 2014 Detrital zircons in basement metasedimentary protoliths unevil the origins of southern India; Geol. Soc. Am. Bull. 126 791–812.

    Article  Google Scholar 

  • Polat A, Appel P W U and Fryer B J 2011 An overview of the geochemistry of Eoarchean to Mesoarchean ultramafic to mafic volcanic rocks, SW Greenland: Implications for mantle depletion and petrogenetic processes at subduction zones in the early Earth; Gondwana Res. 20 255–283.

  • Praveen M N, Santosh M, Yang Q Y, Zhang Z C, Huang H, Singanenjam S and Sajinkumar K S 2013 Zircon U–Pb geochronology and Hf isotope of felsic volcanics from Attappadi, southern India: Implications for Neoarchean convergent margin tectonics; Gondwana Res. 26 907–924.

  • Putirka K 2008 Thermometers and barometers for volcanic systems; Rev. Mineral. Geochem. 69 61–120.

    Article  Google Scholar 

  • Raith M, Srikantappa C, Buhl D and Kuhler H 1999 The Nilgiri enderbites, South India: Nature and age constraints on protolith formation, high-grade metamorphism and cooling history; Precamb. Res. 98 129–150.

    Article  Google Scholar 

  • Rajesh H M and Santosh M 2004 Charnockitic magmatism in southern India; J. Earth Syst. Sci. 113 565–585.

    Article  Google Scholar 

  • Rajesh V J, Arai S, Satish Kumar M, Santosh M and Tamura A 2013 High-Mg low-Ni cumulates from Pan-African accretionary belt in southern India: Implications for the genesis of volatile-rich high-Mg melts in suprasubduction setting; Precamb. Res. 227 409–425.

    Article  Google Scholar 

  • Ramakrishnan M and Vaidyanathan R 2008 Geology of India; Vol. 1, Geol. Soc. India, Bangalore.

    Google Scholar 

  • Rogkala A, Petrounias P, Tsikouras B and Hatzipanagiotou K 2017 New occurrence of pyroxenites in the Veria-Naousa ophiolite (North Greece): Implications on their origin and petrogenetic evolution; Geosciences 7(4) 92.

    Article  Google Scholar 

  • Samuel V O, Santosh M, Liu S, Wang W and Sajeev K 2014 Neoarchean continental growth through arc magmatism in the Nilgiri Block, Southern India; Precamb. Res. 245 146–173.

    Article  Google Scholar 

  • Santosh M, Maruyama S and Sato K 2009 Anatomy of a Cambrian suture in Gondwana: Pacific-type orogeny in southern India; Gondwana Res. 16(2) 321–341.

    Article  Google Scholar 

  • Santosh M, Xiao W J, Tsunogae T, Chetty T R K and Yellappa T 2012 The Neoproterozoic subduction complex in southern India: SIMS zircon U–Pb ages and implications for Gondwana assembly; Precamb. Res. 192–195 190–208.

    Article  Google Scholar 

  • Santosh M, Shaji E, Tsunogae T, Ram Mohan M, Satyanarayanan M and Horie K 2013 Neoarchean suprasubduction zone ophiolite from Agali hill, southern India: Petrology, zircon SHRIMP U–Pb geochronology, geochemistry and tectonic implications; Precamb. Res. 231 301–324.

    Article  Google Scholar 

  • Shaji E, Santosh M, Fang He X, Rui Fan H, Dhanil Dev S G, Yang K F, Thangal M K and Pradeep Kumar A P 2014 Convergent margin processes during Archean–Proterozoic transition in southern India: Geochemistry and zircon U–Pb geochronology of gold-bearing amphibolites, associated metagabbros, and TTG gneisses from Nilambur; Precamb. Res. 250 68–96.

    Article  Google Scholar 

  • Shimpo M, Tsunogae T and Santosh M 2006 First report of garnet-corundum rocks from Southern India: Implications for prograde high-pressure (eclogite-facies?) metamorphism; Earth Planet. Sci. Lett. 242 111–129.

    Google Scholar 

  • Singh A K 2009 High Al-chromian spiel in peridotites of Manipur ophiolite complex, Indo-Mayanmar Orogenic Belt: Implication for petrogenesis and geotectonic setting; Curr. Sci. 96(7) 973–978.

    Google Scholar 

  • Singh A K, Nayak R, Khogenkumar1 S, Subramanyam K S V, Thakur S S, Bikramaditya Singh R K and Satyanarayanan M 2017 Genesis and tectonic implications of cumulate pyroxenites and tectonite peridotites from the Nagaland–Manipur ophiolites, Northeast India: Constraints from mineralogical and geochemical characteristics; Geol. J. 52 415–436.

  • Snoke A W, Quick J E and Bowman H R 1981 Bear Mountain igneous complex, Klamath Mountains, California: An ultrabasic to silicic calcalkaline suite; J. Petrol. 22 501–552.

    Article  Google Scholar 

  • Spandler C J, Arculus R J, Eggins S M, Mavrogenes J A, Price R C and Reay A J 2003 Petrogenesis of the Green hills Complex, Southland, New Zealand: Magmatic differentiation and cumulate formation at the roots of a Permian island-arc volcano; Contrib. Mineral. Petrol. 144 703–721.

    Article  Google Scholar 

  • Spray J G 1989 Upper mantle segregation Process: Evidence from Alpine-type peridotites; Geol. Soc. London, Spec. Publ. 42 29–40.

    Article  Google Scholar 

  • Stern R J 2002 Subduction zones; Rev. Geophys. 40 3.1–3.38.

  • Subramaniam A P 1956 Mineralogy and petrology of the Sittampundi Complex, Salem district, Madras State, India; Geol. Soc. Am. Bull. 67 317–390.

    Article  Google Scholar 

  • Sun S S and McDonough W F 1989 Chemical and isotope systematics of oceanic basalts: Implications for mantle composition and processes; In: Magmatism in the Ocean Basins (eds) Saunders A D and Norry M J, Geol. Soc. Spec. Publ. 42 313–345.

  • Tatsumi Y, Hamilton D L and Nesbitt R W 1986 Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: Evidence from high pressure experiments and natural rock; J. Volcan. Geotherm. Res. 29 293–309.

    Article  Google Scholar 

  • Taylor Jr H P 1967 The zoned ultramafic complexes of Southeastern Alaska; In: Ultramafic and Related Rocks (ed.) Wyllie P J, Wiley, New York, NY, pp. 97–121.

    Google Scholar 

  • Tilhac R, Grégoire M, O’Reilly S Y, Griffin W L, Henry H and Ceuleneer G 2017 Sources and timing of pyroxenite formation in the sub-arc mantle: Case study of the Cabo Ortegal Complex, Spain; Earth Planet. Sci. Lett. 474 470–502.

    Google Scholar 

  • Thayer T P 1960 Some critical differences between Alpine-type and stratiform peridotite-gabbro complexes; Int. Geol. Congress, 21st, Copenhagen, Rept. Session, Norden; 13 247–259.

    Google Scholar 

  • Tsunogae T and Santosh M 2006 Spinel-saphirine-quartz bearing composite inclusions within garnet from an ultrahigh-temperature pelitic granulite: Implications for metamorphic history and P–T path; Lithos 92 524–536.

    Article  Google Scholar 

  • Venkatasivappa V 2014 Structural history and geochemical characteristics of granulite facies rocks around Namakkal, Southern Granulitie Terrane, India; Unpublished Thesis, Osmania University, Hyderabad.

  • Wan Z, Coogan L A and Canil D 2008 Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer; Am. Mineral. 93 1142–1147.

    Article  Google Scholar 

  • Wang Z, Wilde S A and Wan J 2010 Tectonic setting and significance of 2.3–2.1 Ga magmatic events in the Trans-North China Orogen: New constraints from the Yanmenguan mafic–ultramafic intrusion in the Hengshan–Wutai–Fuping area; Precamb. Res. 178(1–4) 27–42.

  • Whattam S A, Cho M and Smith I E M 2011 Magmatic peridotites and pyroxenites, Andong ultramafic complex, Korea: Geochemical evidence for supra-subduction zone formation and extensive melt rock interaction; Lithos 127 599–618.

    Article  Google Scholar 

  • Xiong Q, Zheng J P, Griffin W L, O’Reilly S Y and Pearson N J 2014 Pyroxenite dykes in orogenic peridotite from North Qaidam (NE Tibet, China) track metasomatism and segregation in the mantle wedge; J. Petrol. 55 2347–2376.

    Article  Google Scholar 

  • Yellappa T, Chetty T R K, Tsunogae T and Santosh M 2010 Manamedu complex: Geochemical constraints on Neoproterozoic suprasubduction zone ophiolite formation within Gondwana suture in southern India; J. Geodyn. 50 268–285.

    Article  Google Scholar 

  • Yellappa T, Santosh M, Chetty T R K, Sanghoon Kwon, Chansoo Park, Nagesh P, Mohanty D P and Venkatasivappa V 2012 A Neoarchean dismembered ophiolite complex from southern India: Geochemical and geochronological constraints on its suprasubduction origin; Gondwana Res. 21 245–265.

  • Yellappa T, Venkatasivappa V, Koizumi T, Chetty T R K, Santosh M and Tsunogae T 2014 The mafic–ultramafic complex of Aniyapuram, Cauvery Suture Zone, Southern India: Petrological and geochemical constraints for Neoarchean suprasubduction zone tectonics; J. Asian Earth Sci. 95 81–98.

    Article  Google Scholar 

  • Yellappa T, Santosh M and Manju S 2019 The mafic–ultramafic complex of Salem, southern India: An analogue for Neoproterozoic Alaskan-type complex; Geol. J. 54(5) 3017–3040.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Director, CSIR-NGRI, Hyderabad for providing facilities, encouragement and permission to publish this paper. We are thankful to our colleagues Dr Khesav Krishna, Dr E V S S K Babu, Dr T Vijaya Kumar, Ms S Manju, NGRI, Hyderabad and University of Tsukuba, Ibaraki, Japan for providing XRF, ICPMS and EPMA data. Special thanks to Dr T R K Chetty, Dr V Venkatasivappa and Prof M Santosh for providing valuable inputs and several discussions. The authors are also thankful to two anonymous reviewers for their kind suggestions and comments to improve the manuscript. This work forms a part of Department of Science and Technology, Government of India, sponsored Project Ref: EEQ/2018/001004.

Author information

Authors and Affiliations

Authors

Contributions

Field work has been carried out jointly by the all three authors. The petrography, whole rock-mineral chemistry analysis and data interpretations have been carried out by the first author and some parts of mineral chemistry and petrography carried out by the second and third authors. The manuscript has been written by the first and third authors.

Corresponding author

Correspondence to T Yellappa.

Additional information

Communicated by Rajneesh Bhutani

Supplementary material pertaining to this article is available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yellappa, T., Koizumi, T. & Tsunogae, T. Geochemical constrains on pyroxenites from Aniyapuram Mafic–Ultramafic Complex, Cauvery Suture Zone, southern India: Suprasubduction zone origin. J Earth Syst Sci 130, 11 (2021). https://doi.org/10.1007/s12040-020-01516-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-020-01516-8

Keywords

Navigation