Skip to main content

Advertisement

Log in

Palaeogeographic implications of ichnotaxa assemblages from early Permian fluvio-marine Barakar Formation, Raniganj Basin, India

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The sandstone-shale-coal succession of the Barakar Formation (early Permian) of the Raniganj Basin, India hosts low-diversity ichnoassemblages, containing ichnogenera Arenicolites, Chondrites, Diplocraterion, Monocraterion, Ophiomorpha, Palaeophycus, Planolites, Skolithos, Taenidium, and Thalassinoides, produced by shallow marine infaunal invertebrates. Sedimentary facies architecture depicts a transgressive, fluvio-tidal (with a minor wave) interactive estuarine depositional setting. The fluvial deposits, lying beyond the zone of tidal encroachments, record absence of trace fossils, which is attributed to a low colonization window caused by high fluvial discharge and frequent channel migrations. Tidal interactions with high fluvial discharge led to bay-head deltas in the inner-middle estuary with the dominance of suspension-feeding and deposit-feeding ichnotaxa in coarser- and finer-dominated sediments, respectively, suggesting a mixed Skolithos–Cruziana ichnofacies. Increasing tidal influence with very less fluvial input allowed opportunistic colonizers and deposit feeders of the Cruziana ichnofacies to flourish in the central estuarine setting. Intermittent low-oxygenated restricted conditions marked by the chemosymbiotic ichnoassemblages of the Zoophycos ichnofacies indicate very low energy conditions. The outer estuary with increasing wave dominance is inhabited by suspension-feeding, domicile ichnotaxa of Skolithos ichnofacies, frequently mixed with the ichnotaxa of the Cruziana ichnofacies. The recurrent juxtaposition and lateral distribution of the Seilacherian marginal marine ichnofacies is attributed to complex sediment–organism interaction patterns in response to prevalent energy conditions, sediment discharge and substrate conditions in different zones of the fluvio-tidal estuarine setting. The integrated sedimentological-ichnological model signifies marine transgressions that affected the palaeogeography of the Permian continental Gondwanaland.

Research Highlights

  • Sedimentological–ichnological analysis signifies marine encroachment in Barakar Formation in peninsular India.

  • Ichnoassemblages point to complex pattern of sediment–organism interactions with gross energy distribution.

  • Sustained marine transgression event within the continental Gondwanaland during early Permian is visualized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  • Angulo S and Buatois L A 2012 Ichnology of a Late Devonian–Early carboniferous low-energy seaway: The Bakken Formation of subsurface Saskatchewan, Canada: Assessing paleoenvironmental controls and biotic responses; Palaeogeogr. Palaeoclimatol. Palaeoecol. 315 46–60.

    Article  Google Scholar 

  • Aschoff J L, Olariu C and Steel R J 2018 Recognition and significance of bayhead delta deposits in the rock record: A comparison of modern and ancient systems; Sedimentology 65 62–95.

    Article  Google Scholar 

  • Banerjee S, Ghosh P, Nagendra R, Bhattacharya B, Desai B G and Srivastava A K 2020 Marine and fluvial sedimentation including erosion and sediment flux in peninsular Indian Phanerozoic Basins; Proc. Indian Natl. Sci. Acad. 86(1) 351–363.

    Google Scholar 

  • Bann K L and Fielding C R 2004 An integrated ichnological and sedimentological comparison of non-deltaic shoreface and subaqueous delta deposits in Permian reservoir units of Australia; Geol. Soc. Lond. Spec. Publ. 228 273–310.

    Article  Google Scholar 

  • Bayet-Goll A and Neto de Carvalho C 2016 Ichnology and sedimentology of a tide-influenced delta in the Ordovician from the northeastern Alborz range of Iran (Kopet Dagh region); Lethaia 49 327–350.

    Article  Google Scholar 

  • Beynon B M, Pemberton S G, Bell D D and Logan C A 1988 Environmental implications of ichnofossils from the Lower Cretaceous Grand Rapids Formation, Cold Lake Oil Sands Deposit; In: Sequences, stratigraphy, sedimentology: Surface and subsurface, Can. Soc. Petrol. Geol. Memoir 15 275–289.

  • Bhattacharjee J, Ghosh K K and Bhattacharya B 2018 Petrography and geochemistry of sandstone-shale from Barakar Formation (early Permian), Raniganj Basin, India: Implications on provenance, weathering and marine depositional conditions during Lower Gondwana sedimentation; Geol. J. 53(3) 1102–1122.

    Article  Google Scholar 

  • Bhattacharya B, Bandyopadhyay S, Mahapatra S and Banerjee S 2012 Record of tide wave influence on coal bearing Permian Barakar Formation, Raniganj Basin, India; Sedim. Geol. 267–268 25–35.

    Article  Google Scholar 

  • Bhattacharya B and Banerjee S 2014 Chondrites isp. indicating Late Palaeozoic Anoxia in eastern peninsular India; Sci. World J. 2014 434672.

    Article  Google Scholar 

  • Bhattacharya B and Banerjee P P 2015 Record of Permian Tethyan transgression in eastern India: A reappraisal of the Barren Measures Formation, West Bokaro Coalfield; J. Mar. Petrol. Geol. 67 170–179.

    Article  Google Scholar 

  • Bhattacharya B, Banerjee S and Bandyopadhyay S 2016a Glossifungites ichnofabric signifying Crustacean colonization in early Permian Barakar Formation, Talchir Coal Basin, India; Curr. Sci. 110(1) 86–91.

    Article  Google Scholar 

  • Bhattacharya B, Bhattacharjee J, Banerjee S, Bandyopadhyay S and Das R 2016b Seismites in Permian Barakar Formation, Raniganj Basin, India: Implications on Lower Gondwana basin evolution; Arab. J. Geosci. 9 300.

    Article  Google Scholar 

  • Bhattacharya B, Bhattacharjee J, Bandyopadhyay S, Banerjee S and Adhikari K 2018 Early Permian transgressive-regressive cycles: Sequence stratigraphic reappraisal of the coal-bearing Barakar Formation, Raniganj Basin, India; J. Earth Syst. Sci. 127 29.

    Article  Google Scholar 

  • Bhattacharya B and Bhattacharya H N 2007 Implications of trace fossil assemblages from Late Palaeozoic glaciomarine Talchir Formation, Raniganj Basin, India; Gondwana Res. 12 509–524.

    Article  Google Scholar 

  • Bhattacharya B and Saha A 2020 Large soft-sediment deformation structures (SSDS) in the Permian Barren Measures Formation, Pranhita–Godavari Valley, India: Potential link to syn-rift palaeoearthquake events; J. Palaeogeogr. 9 14, https://doi.org/10.1186/s42501-020-00063-z.

    Article  Google Scholar 

  • Bhattacharya H N and Bhattacharya B 2015 Lithofacies architecture and Palaeogeography of the Late Palaeozoic Glaciomarine Talchir Formation, Raniganj Basin, India; J. Palaeogeogr. 4 269–283.

    Article  Google Scholar 

  • Bhattacharya B, Jha S and Mondal P 2020 Palaeogeographic reconstruction of a fluvio-marine transitional system in Narmada rift basin, India – Implications on Late Cretaceous global sea-level rise; J. Palaeogeogr. 9 30, https://doi.org/10.1186/s42501-020-00078-6.

    Article  Google Scholar 

  • Bottjer D J and Droser M L 1991 Ichnofabric and basin analysis; Palaios 6(3) 199–205.

    Article  Google Scholar 

  • Bown T M and Kraus M J 1983 Ichnofossils of the alluvial Willwood Formation (Lower Eocene), Bighorn Basin, Northwest Wyoming, U.S.A.; Palaeogeogr. Palaeoclimatol. Palaeoecol. 43 95–128.

    Article  Google Scholar 

  • Bromley R J 1996 Trace fossils, biology, taphonomy and applications; 2nd edn, Chapman and Hall, London, 361p.

    Google Scholar 

  • Bromley R G and Asgaard U 1979 Triassic freshwater ichnocoenoses from Carlsberg Fjord, East Greenland; Palaeogeogr. Palaeoclimatol. Palaeoecol. 28 39–80.

    Article  Google Scholar 

  • Bromley R G and Uchman A 2003 Trace fossils from the Lower and Middle Jurassic marginal marine deposits of the Sorthat Formation, Bornholm, Denmark; B. Geol. Soc. Denmark 52 185–208.

    Google Scholar 

  • Buatois L A, Gingras M K, MacEachern J, Mángano M G, Zonneveld J P, Pemberton S G, Netto R G and Martin A 2005 Colonization of brackish-water systems through time: Evidence from the trace-fossil record; Palaios 20 321–347.

    Article  Google Scholar 

  • Buaitois L A and Mangano M G 2011 Ichnology. Organism–Substrate Interactions in Space and Time; Cambridge University Press, Cambridge, 358p.

    Book  Google Scholar 

  • Buaitois L A, Mangano M G, Genise J F and Taylor T N 1998 The ichnologic record of continental invertebrate invasion: Evolutionary trends in environmental expansion, ecospace utilization, and behavioural complexity; Palaios 13 217–240.

    Article  Google Scholar 

  • Buaitois L A, Netto R G and Mangano M G 2001 Application of ichnologic studies to palaeoenvironmental and sequence stratigraphic analysis of Permian marginal to shallow marine coal bearing successions of the Parana Basin, Brazil; AAPG, Abstracts with programme, Denver A, 28p.

  • Carmona N B, Buatois L A, Ponce J J and Mángano M G 2009 Ichnology and sedimentology of a tide-influenced delta, Lower Miocene Chenque Formation, Patagonia, Argentina: trace-fossil distribution and response to environmental stresses; Palaeogeogr. Palaeoclimat. Palaeoecol. 273 75–86.

    Article  Google Scholar 

  • Casshyap S M 1970 Sedimentary cycles and environment of deposition of the Barakar Coal measures of Gondwana, India; J. Sedim. Petrol. 40 1302–1317.

    Article  Google Scholar 

  • Casshyap S M and Tewari R C 1984 Fluvial models of the Lower Permian coal measures of Son–Mahanadi and Koel–Damodar valley basins India; Spec. Publ. Int. Assoc. Sedim. 7 121–145.

    Google Scholar 

  • Cashyap S M and Tewari R C 1988 Depositional model and tectonic evolution of Gondwana basins; Palaeobotanist 36 59–66.

    Google Scholar 

  • Crimes T P 1977 Trace fossils of an Eocene deep-sea sand fan, northern Spain; In: Trace Fossils 2 (eds) Crimes T P and Harper J C, Geol J. Special Issue 9 71–90.

  • Dalrymple R W and Choi K 2007 Morphologic and facies trends through the fluvial–marine transition in tide-dominated depositional systems: A schematic framework for environmental and sequence–stratigraphic interpretation; Earth Sci. Rev. 81(3) 135–174.

    Article  Google Scholar 

  • Dasgupta S, Buatois L A and Mángano M G 2016 Living on the edge: Evaluating the impact of stress factors on animal-sediment interactions in subenvironments of a shelf-margin delta, the Mayaro Formation, Trinidad; J. Sedim. Res. 86 1034–1066.

    Article  Google Scholar 

  • Dashtgard S E, Gingras M K and Pemberton S G 2008 Grain-size controls on the occurrence of bioturbation; Palaeogeogr. Palaeoclimatol. Palaeoecol. 257 224–243.

    Article  Google Scholar 

  • Díez-Canseco D, Buatois L A, Mángano M G, Rodriguez W and Solorzano E 2015 The ichnology of the fluvial-tidal transition: Interplay of ecologic and evolutionary controls; In: Dev. Sedimentol., Elsevier 68 283–321.

  • Ehrenberg K 1944 Ergaenzende Bemerkungen zu den Sein erzeit aus dem Miozaen von Burgschleinitz Beschriebenen Gangkernen und Buuten dekapoder Krebse; Paläontol. Ztschr. 23(3–4) 345–359.

    Google Scholar 

  • Ekdale A A, Bromley R G and Knaust D 2012 The Ichnofabric concept; In: Trace fossils as indicators of sedimentary environments. Developments in Sedimentology 64 (eds) Knaust D and Bromley R G, Elsevier, Amsterdam, pp. 139–155.

  • Ekdale A A, Bromley R G and Pemberton S G 1984 Ichnology: The use of trace fossils in sedimentology and stratigraphy; Soc. Sedim. Geol. (SEPM) Short Course 15 317.

  • Elicki O and Altumi M M 2019 Cambrian trace fossils from North Africa and their contribution to Gondwana’s palaeobiogeography and depositional history; J. Afr. Earth Sci. 158 103556.

    Article  Google Scholar 

  • Fillion D and Pickerill R K 1990 Comments on ‘substrate control of Lower Cambrian trace fossils from Bornholm, Denmark’; Palaeogeogr. Palaeoclimatol. Palaeoecol. 80(3–4) 345–350.

    Article  Google Scholar 

  • Follmi K B and Grimm K A 1990 Doomed Pioneers: Gravity flow pioneers and bioturbation in marine oxygen deficient environments; Geology 18 1069–1072.

    Article  Google Scholar 

  • Frey R W 1973 Concepts in the study of biogenic sedimentary structures; J. Sedim. Petrol. 43 6–19.

    Google Scholar 

  • Frey R W 1975 The study of trace fossils: A synthesis of principles, problems and procedures in Ichnology; Springer, New York.

    Book  Google Scholar 

  • Frey R W 1990 Trace fossils and hummocky cross-stratification, Upper Cretaceous of Utah; Palaios 5 203–218.

    Article  Google Scholar 

  • Frey R W, Curran H A and Pemberton S G 1984 Trace making activities of crabs and their environmental significance: The ichnogenus Psilonichnus; J. Palaeontol. 58 333–350.

    Google Scholar 

  • Frey R W and Howard J D 1985 Trace fossils from the Panther Member, Star Point Formation (Upper Cretaceous), Coal Creek Canyon, Utah; J. Palaeontol. 59 370–404.

    Google Scholar 

  • Frey R W, Howard J D and Pryor W A 1978 Ophiomorpha: Its morphologic, taxonomic, and environmental significance; Palaeogeogr. Palaeoclimatol. Palaeoecol. 23 199–229.

    Article  Google Scholar 

  • Frey R W and Pemberton S G 1984 Trace fossil facies models; In: Facies Models (ed.) Walker R G, Geosci. Can. Reprint Series 1 189–207.

  • Fürsich F T 1974 Corallian (Upper Jurassic) trace fossils from England and Normandy; Stuttgarter Beitr; Nature B13 1–52.

    Google Scholar 

  • Fürsich F T 1975 Trace fossils as environmental indicators in the Corallian of England and Normandy; Lethaia 8 51–172.

    Article  Google Scholar 

  • Fürsich F T 1998 Environmental distribution of trace fossils in the Jurassic of Kachchh (western India); Facies 39 243–272.

    Article  Google Scholar 

  • Gerard J R F and Bromley R G 2008 Ichnofabrics in clastic sediments: Applications to sedimentological core studies: A practical guide; JRF Gerard, Madrid, 100p.

    Google Scholar 

  • Gibert De J M and Ekdale A A 1999 Trace fossil assemblages reflecting stressed environments in the Middle Jurassic Carmel Seaway of central Utah; J. Palaeontol. 73(4) 711–720.

    Article  Google Scholar 

  • Gingras M K and MacEachern J A 2012 Tidal ichnology of shallow-water clastic settings; In: Principles of tidal sedimentology (eds) Davis R A and Dalrymple R W, Springer Science, Business Media. B.V., pp. 57–77, https://doi.org/10.1007/978-94-007-0123-6_4.

  • Gingras M K, MacEachern J A and Dashtgard S E 2011 Process Ichnology and the elucidation of physico-chemical stress; Sedim. Geol. 237 115–134.

    Article  Google Scholar 

  • Gingras M K, MacEachern J A, Dashtgard S E, Zonneveld J P, Schoengut J, Ranger M J and Pemberton S G 2012 Estuaries; In: Trace fossils as indicators of sedimentary environments. Developments in Sedimentology (eds) Knaust D and Bromley R G, Elsevier, Amsterdam 64 463–505.

  • Goldring R 1962 Trace fossils of the Baggy Beds (Upper Devonian) of north Devon, England; Palaontol. Z. 36 232–251.

    Article  Google Scholar 

  • Goldring R 1996 The sedimentological significance of concentrically laminated burrows from Lower Cretaceous Ca-bentonites, Oxfordshire; J. Geol. Soc. 153(2) 255–263.

    Article  Google Scholar 

  • Gupta A 2000 Role of storm in Ramgarh and West Bokaro Coalfields and its implication in adjacent peninsular Gondwana Coalfields, India; Gond. Res. 3(4) 529–544.

    Article  Google Scholar 

  • Hakes W G 1976 Trace fossils and depositional environment of four clastic units, Upper Pennsylvanian megacyclothems, northeastern Kansas; Univ. Kans. Palaeontol. Contrib. 63 46.

    Google Scholar 

  • Haldeman S T 1840 Supplement to number one of ‘A monograph of the Limniades, or freshwater univalvia shells of North America’, containing descriptions of apparently new animals in different classes, and the names and characters of the subgenera in Paludina and Anculosa, Philadelphia, 3p.

  • Hall J 1847 Palaeontology of New York; C. van Benthuysen, Albany, vol. 1, 338p.

    Google Scholar 

  • Häntzschel W 1975 Trace fossils and problematica; In: Treatise on Invertebrate Paleontology, Part. W. Miscellanea, Supplement 1 (ed.) Teichert C, Geol. Soc. Am. and Univ. of Kansas Press, W269p.

  • Hasiotis S T, Bown T M and Abston C 1994 Photo glossary of marine and continental ichnofossils; US Geol. Surv. Digital Data Ser. (DDS) Publ. 1 DDS-23. [CD-ROM].

  • Hauck T E, Dashtgard S E, Pemberton S G and Gingras M K 2009 Brackish-water ichnological trends in a microtidal barrier island-embayment system, Kouchibouguac National Park, New Brunswick, Canada; Palaios 24 478–496.

    Article  Google Scholar 

  • Heer O 1877 Flora Fossilis Helvatiae. Die vorweltliche Flora der Schweiz; Verlag J. Wurster and Co., Zürich, 182p.

    Google Scholar 

  • Hofmann R, Mángano M G, Elicki O and Shinaq R 2012 Palaeoecologic and biostratigraphic significance of trace fossils from shallow- to marginal-marine environments from the Middle Cambrian (Stage 5) of Jordan; J. Paleontol. 86(6) 931–955.

    Article  Google Scholar 

  • Howard J D, Elders C A and Heinbokel J F 1975 Animal–sediment relationships in estuarine point bar deposits, Ogeechee River–Ossabaw Sound; In: Estuaries of the Georgia Coast, USA Sedim. Biol. (eds) Howard J D and Frey R W, Senckenberg, Marit. 7 181–203.

  • Howard J D and Frey R W 1984 Characteristic trace fossils in nearshore to offshore sequences, Upper Cretaceous of east central Utah; Can. J. Earth Sci. 21 200–219.

    Article  Google Scholar 

  • Hubbard S M, Gingras M K and Pemberton S G 2004 Palaeoenvironmental implications of trace fossils in estuarine deposits of the Cretaceous Bluesky Formation, Cadotte region, Alberta, Canada; Foss. Strata. 51 1–20.

    Google Scholar 

  • Lundgren R 1891 Fossile Pflanzenreste aus der palaeolithoschen Formation von Dillenburg, Biedenkopf und Friedberg und aus dem Saalfeldischen; Palaeontographica 1 105–128.

    Google Scholar 

  • MacEachern J A, Bann K L, Gingras M K, Zonneveld J-P, Dashtgard S E and Pemberton S G 2012 The ichnofacies paradigm; In: Trace Fossils as Indicators of Sedimentary Environments. Developments in Sedimentology (eds) Knaust D and Bromley R G, Elsevier, Amsterdam 64 103–138.

  • Mangano M G and Buatois L A 2004 Reconstructing Early Phanerozoic intertidal ecosystems: Ichnology of the Cambrian Campanario Formation in northwest Argentina; Foss. Strata. 51 17–38.

    Google Scholar 

  • Melnyk S and Gingras M K 2019 Using ichnological relationships to interpret heterolithic fabrics in fluvio-tidal settings; Sedimentology, https://doi.org/10.1111/sed.12674.

    Article  Google Scholar 

  • Miller M F, Hasiotis S T, Babcock L E, Isbell J L and Collinson J W 2001 Tetrapod and large burrows of uncertain origin in Triassic high latitude floodplain deposits, Antarctica; Palaios 16 218–232.

    Article  Google Scholar 

  • Minter N J, Buatois L A and Mangano M G 2016 The conceptual and methodological tools of ichnology; In: The Trace-Fossil Record of Major Evolutionary Events, Topics in Geobiology 39 (eds) Buatois L A and Mangano M G, Springer Science+Business Media Dordrecht, pp. 1–26.

  • Mukhopadhyay G, Mukhopadhyay S K, Roychowdhury M and Parui P K 2010 Stratigraphic correlation between different Gondwana basins of India; J. Geol. Soc. India 76(3) 251–266.

    Article  Google Scholar 

  • Mukhopadhyay S K 1996 Trace fossils as palaeoenvironmental and sedimentological indices of coal bearing Gondwana sequence; Proc. Volume IXth Intl. Gond. Symp. 1 505–528.

  • Nicholson H A 1873 III. Contributions to the study of the errant Annelides of the older palæozoic rocks; Proc. Roy. Soc. London 21(139–147) 288–290.

  • Pemberton S G and Frey R W 1982 Trace fossil nomenclature and the Planolites–Palaeophycus dilemma; J. Palaeontol. 56 843–871.

    Google Scholar 

  • Pemberton S G and Frey R W 1984 Ichnology of storm-influenced shallow marine sequence: Cardium Formation (Upper Cretaceous) at Seebe, Alberta; In: The Mesozoic of Middle North America (eds) Stott D F and Glass D L, Can. Soc. Petrol. Geol., Mem. 9 281–304.

  • Pemberton S G, MaEachern J A and Frey R W 1992 Trace fossil facies models: Environmental and allostratigraphic significance; In: Facies Models: Response to Sea Level Change (ed.) James N P, GAC, pp. 47–72.

  • Pemberton S G and Wightman D M 1992 Ichnologic characteristics of brackish water deposits; SEPM Core Workshop 17 339–382.

    Google Scholar 

  • Plotnick R E 2012 Behavioral biology of trace fossils; Paleobiol. 38(3) 459–473.

    Article  Google Scholar 

  • Poire D G, Spalletti L A and DelValle A 2003 The Cambrian Ordovician siliciclastic platform of the Balcarca Formation (Tandilla System, Argentina): Facies, trace fossils, palaeoenvironment and sequence stratigraphy; Geol. Acta 1 41–60.

    Google Scholar 

  • Polo C A, Melvin J, Hooker N P, Rees A J, Gingras M K and Pemberton S G 2018 The ichnological and sedimentological signature of a late Paleozoic, postglacial marginal-marine and shallow-marine, tidally influenced setting: The Wudayhi Member of the Nuayyim Formation (Unayzah Group) in the subsurface of central and eastern Saudi Arabia; J. Sedim. Res. 88(9) 991–1025.

    Article  Google Scholar 

  • Rotnicka J 2005 Ichnofabrics of the Upper Cretaceous fine grained rocks from the Stolowe Mountains (Sudetes SW Poland); Geol. Q. 49 15–30.

    Google Scholar 

  • Salter J W 1857 On annelide-burrows and surface-markings from the Cambrian rocks of the Longmynd; Quart. J. Geol. Soc. London 13 199–206.

    Article  Google Scholar 

  • Schmidt-Neto H, Netto R G and Dasgupta S 2018 Storm-related taphofacies in estuarine settings: An integrated analysis on the Early Permian deposits of the Rio Bonito Formation (Paraná Basin, S Brazil); J. South Am. Earth Sci. 85 263–277.

    Article  Google Scholar 

  • Schlirf M and Uchman A 2005 Revision of the ichnogenus Sabellarifex Richter, 1921 and its relationship to Skolithos Haldeman, 1840 and Polykladichnus Fürsich, 1981; J. Syst. Palaeontol. 3 115–131.

    Article  Google Scholar 

  • Seilacher A 1964 Biogenic sedimentary structures. In: Approaches to Paleoecology (eds) Imbrie J and Newell N, Wiley, New York, pp. 296–316.

    Google Scholar 

  • Seilacher A 2007 Trace fossil analysis; Springer, Berlin Heidelberg, New York.

    Google Scholar 

  • Shchepetkina A, Gingras M K, Mángano M G and Buatois L A 2019 Fluvio-tidal transition zone: Terminology, sedimentological and ichnological characteristics, and significance; Earth-Sci. Rev. 192 214–235.

    Article  Google Scholar 

  • Smith R M H 1987 Helical burrow casts of the rapsid origin from the Beufort Group (Permian) of South Africa; Palaeogeogr. Palaeoclimatol. Palaeoecol. 57 285–331.

    Google Scholar 

  • Taylor A M and Goldring R 1993 Description and analysis of bioturbation and ichnofabric; J. Geol. Soc. London 150 141–148.

    Article  Google Scholar 

  • Taylor A, Goldrig R and Gowland S 2003 Analysis and application of ichnofabrics; Earth Sci. Rev. 60(3) 227–259.

    Article  Google Scholar 

  • Tewari R C 2005 Tectono-stratigraphic sedimentary events in Gondwana succession of peninsular India; J. Geol. Soc. India 65(5) 636–638.

    Google Scholar 

  • Torell O M 1870 Petrificata Suecana Formationis Cambricae; Lunds Univ. Arsskr. 6(8) 1–14.

    Google Scholar 

  • Uchman A 1998 Taxonomy and ethology of flysch trace fossils: Revision of the Marian Ksiazkiewicz Collection and studies of complementary material; Ann. Soc. Geol. Pol. 68 105–218.

    Google Scholar 

  • Vaziri S H and Furisch F T 2007 Middle to Upper Triassic deep water trace fossils from the Ashin Formation, Nakhlak Area, Central Iran; J. Sci. I. R. Iran 18 253–268.

    Google Scholar 

  • Veevers J J and Tewari R C 1995 Gondwana master basin of Peninsular India – between Tethys and the interior of the Gondwanaland – Province of Pangea; Mem. Geol. Soc. Am. 187 1–73.

    Google Scholar 

  • von Sternberg G K 1833 Versuch einer geognostischbotanischen Darstellung der Flora der Vorwelt; IV Heft V. C. E. Brenck, Regensburg, 48p.

  • Vossler S M and Pemberton S G 1989 Ichnology and palaeoecology of ichnofabric; Earth Sci. Rev. 60 227–259.

    Google Scholar 

  • Weimer R J and Hoyt J H 1964 Burrows of Callianassa major say, geologic indicators of littoral and shallow neritic environments; J. Paleontol. 38 761–767.

    Google Scholar 

  • Wesolowski L J N, Buatois L A, Mangano M G, Ponce J J and Carmona N B 2018 Trace fossils, sedimentary facies and parasequence architecture from the Lower Cretaceous Mulichinco Formation of Argentina: The role of fair-weather waves in shoreface deposits; Sedim. Geol. 367 146–163.

    Article  Google Scholar 

  • Wetzel A 1984 Bioturbation in fine-grained sediments: Influence of sediment texture, turbidite frequency and rates of environmental change; Geol. Soc. Lond. Spec. Publ. 15 595–608.

    Article  Google Scholar 

  • Wheeler D M, Scott A J, Coringrato V J and Devine P E 1990 Stratigraphic and depositional history of the Morrow Formation, South east Colorado and South west Kansas; In: Morrow sandstones of South east Colorado and adjacent areas (eds) Sonneberg S A, Shanm L T, Rader K, von Drehle W F and Martin G W, RMAG, Special Paper, pp. 3–35.

  • Wightman D M, Pemberton S G and Singh C 1987 Depositional modelling of Upper Manville (Lower Cretaceous), East Central Alberta: Implication for the recognition of brackish water deposits; SEPM Spec. Publ. 40 189–220.

    Google Scholar 

  • Wignall P B 1993 Distinguishing between oxygen and substrate control in fossil benthic assemblages; J. Geol. Soc. London 150 193–196.

    Article  Google Scholar 

  • Zhang L J, Buatois L A, Mángano M G, Qi Y A, Zhang X, Sun S and Tai C 2017 Early Triassic estuarine depauperate Cruziana Ichnofacies from the Sichuan area of South China and its implications for the biotic recovery in brackish-water settings after the end-Permian mass extinction; Palaeogeogr. Palaeoclimatol. Palaeoecol. 485 351–360.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support in the form of the FASTTRACK Research Scheme (No. SR/FTP/ES-170/2010) awarded to B Bhattacharya by the Science and Engineering Research Board (SERB), Government of India, is gratefully acknowledged. The authors are thankful to the two anonymous reviewers for constructive suggestions and critical comments, which helped in enhancing the clarity of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

B Bhattacharya: Conceptualization, visualization, investigation, identification-ichnotaxa, simulation of data, modelling, validation, writing, reviewing and editing; J Bhattacharjee: Investigation, identification-ichnotaxa, systematic descriptions, interpretations, simulation of data, writing-draft; S Banerjee: Investigation, identification-ichnotaxa, systematic descriptions, interpretations, simulation of data, writing-draft; T Roy: Investigation, identification-ichnotaxa, systematic descriptions, interpretations, writing; S Bandyopadhyay: Conceptualization, visualization, writing – reviewing and editing.

Corresponding author

Correspondence to Biplab Bhattacharya.

Additional information

Communicated by Santanu Banerjee

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, B., Bhattacharjee, J., Banerjee, S. et al. Palaeogeographic implications of ichnotaxa assemblages from early Permian fluvio-marine Barakar Formation, Raniganj Basin, India. J Earth Syst Sci 130, 12 (2021). https://doi.org/10.1007/s12040-020-01522-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-020-01522-w

Keywords

Navigation