Skip to main content
Log in

Ice Recrystallization Behavior of Corn Starch/Sucrose Solutions: Effects of Addition of Corn Starch and Antifreeze Protein III

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Knowledge of the behavior of corn starch during frozen storage is necessary to understand more complex systems. In the present study, ice recrystallization in corn starch (0.3% and 3%, w/w)/sucrose (40%, w/w) solution was investigated at −10 °C based on the theory of Ostwald ripening. The addition of corn starch to the sucrose solution increased the ice recrystallization (IR) rate constant. To explore the mechanism causing higher IR rate constant, fluorescence microscopy was used to analyze the distribution of corn starch molecules. Fluorescence micrograph showed corn starch distributed homogenously in the freeze-concentrated phase. Ice crystal size distribution assessment showed that at the same average radius, the addition of corn starch increased the standard deviation of ice crystal size distribution. The findings revealed that the addition of corn starch widened the distribution of ice crystal size, which may be the mechanism causing higher IR rate constant. To inhibit the ice recrystallization process, antifreeze protein type III (AFP III) was added to sucrose solutions with and without corn starch. In the presence of corn starch, 0.01-mg/mL AFP III was enough to significantly reduce the IR rate. Conversely, the samples without corn starch did not show a significant reduction in IR rate constant at the same AFP III concentration. The outcomes revealed that corn starch enhanced the activity of AFP III. The results of this study showed that corn starch increased the IR rate constant, and AFP III supplemented with corn starch was synergistically more efficient in retarding IR rate constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Kaminska-Dwórznicka, E. Gondek, S. Laba, E. Jakubczyk, and K. Samborska, Foods 8, (2019)

  2. F.T. Ndoye, G. Alvarez, J. Food Eng. 148, 24–34 (2015)

    Article  Google Scholar 

  3. E. Ben-Yoseph, R.W. Hartel, J. Food Eng. 38(3), 309–329 (1998)

    Article  Google Scholar 

  4. D.P. Donhowe, R.W. Hartel, Int. Dairy J. 6(11-12), 1209–1221 (1996)

    Article  Google Scholar 

  5. D.P. Donhowe, R.W. Hartel, Int. Dairy J. 6(11-12), 1191–1208 (1996)

    Article  Google Scholar 

  6. T. Hagiwara, R.W. Hartel, S. Matsukawa, Food Biophys. 1(2), 74–82 (2006)

    Article  Google Scholar 

  7. P. Klinmalai, M. Shibata, T. Hagiwara, Food Biophys. 12(4), 404–411 (2017)

    Article  Google Scholar 

  8. R.L. Sutton, A. Lips, G. Piccirillo, J. Food Sci. 61(4), 746–748 (1996)

    Article  CAS  Google Scholar 

  9. T. Van Westen, R.D. Groot, Cryst. Growth Des. 18(4), 2405–2416 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  10. A. Eliasson, in Carbohydrates Food, edited by A. Eliasson, Third edn (CRC Press, Boca Raton, 2017), pp. 479–578

  11. C. Ferrero, M.N. Martino, N.E. Zaritzky, J. Food Process. Preserv. 17(3), 191–211 (1993)

    Article  CAS  Google Scholar 

  12. W. Feng, S. Ma, X. Wang, Grain Oil Sci. Technol. 3(1), 29–37 (2020)

    Article  Google Scholar 

  13. E.F.J. Esselink, H. Van Aalst, M. Maliepaard, J.P.M. Van Duynhoven, Cereal Chem. J. 80(4), 396–403 (2003)

    Article  CAS  Google Scholar 

  14. J. Eckardt, C. Öhgren, A. Alp, S. Ekman, A. Åström, G. Chen, J. Swenson, D. Johansson, M. Langton, J. Cereal Sci. 57(1), 125–133 (2013)

    Article  CAS  Google Scholar 

  15. S. Zhang, J. GaO, Y. Lu, S. Cai, X. Qiao, Y. Wang, H. Yu, Zool. Sci. 30(8), 658–662 (2013)

    Article  CAS  Google Scholar 

  16. J.G. Duman, Annu. Rev. Physiol. 63(1), 327–357 (2001)

    Article  CAS  PubMed  Google Scholar 

  17. C.J. Clarke, S.L. Buckley, N. Lindner, Cryo-Letters 23, 89 (2002)

    CAS  PubMed  Google Scholar 

  18. US FDA, Agency Response Letter GRAS Notice No. GRN 000117 (2003)

  19. European Food Safety Authority, EFSA J. 768, 1 (2008)

    Google Scholar 

  20. C. Budke, C. Heggemann, M. Koch, N. Sewald, T. Koop, J. Phys. Chem. B 113(9), 2865–2873 (2009)

    Article  CAS  PubMed  Google Scholar 

  21. A. Regand, H.D. Goff, J. Food Sci. 70, E552 (2005)

    Article  CAS  Google Scholar 

  22. A. Regand, H.D. Goff, J. Dairy Sci. 89(1), 49–57 (2006)

    Article  CAS  PubMed  Google Scholar 

  23. N.S. Ustun, S. Turhan, J. Food Process. Preserv. 39(6), 3189–3197 (2015)

    Article  CAS  Google Scholar 

  24. L. Li, Y. Kim, W. Huang, C. Jia, B. Xu, Cereal Chem. 87(5), 497–503 (2010)

    Article  CAS  Google Scholar 

  25. V. Gaukel, A. Leiter, W.E.L. Spieß, J. Food Eng. 141, 44–50 (2014)

    Article  CAS  Google Scholar 

  26. M.M. Martínez, J. Pico, M. Gómez, Food Hydrocoll. 44, 81–85 (2015)

    Article  Google Scholar 

  27. S. R. Chigurupati, D. Scherpf, and R. Bost, WO 92/13465 (1992)

  28. R. W. Martin and W. S. Hine, US5358728A (1994)

  29. K. Skryplonek, M. Henriques, D. Gomes, J. Viegas, C. Fonseca, C. Pereira, I. Dmytrów, A. Mituniewicz-Małek, J. Dairy Sci. 102(9), 7838–7848 (2019)

    Article  CAS  PubMed  Google Scholar 

  30. I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids 19(1-2), 35–50 (1961)

    Article  Google Scholar 

  31. V. Wagner, Rep. Bunsen Soc. Phys. Chem. 65, 581 (1961)

    CAS  Google Scholar 

  32. R.L. Sutton, D. Cooke, A. Russell, J. Food Sci. 62(6), 1145–1149 (1997)

    Article  CAS  Google Scholar 

  33. A. Regand, H.D. Goff, J. Dairy Sci. 85(11), 2722–2732 (2002)

    Article  CAS  PubMed  Google Scholar 

  34. R.L. Sutton, J. Wilcox, J. Food Sci. 63(1), 9–11 (1998)

    Article  CAS  Google Scholar 

  35. A.N. De Belder, K. Granath, Carbohydr. Res. 30(2), 375–378 (1973)

    Article  Google Scholar 

  36. E.K. Harper, C.F. Shoemaker, J. Food Sci. 48, 1801 (1983)

    Article  Google Scholar 

  37. E.R. Budiaman, O. Fennema, J. Dairy Sci. 70(3), 547–554 (1987)

    Article  CAS  Google Scholar 

  38. M.P. Buera, Y. Roos, H. Levine, L. Slade, H.R. Corti, D.S. Reid, T. Auffret, C.A. Angell, Pure Appl. Chem. 83(8), 1567–1617 (2011)

    Article  CAS  Google Scholar 

  39. D.-W. Sun, Handbook of Frozen Food Processing and Packaging, 2nd ed. (CRC Press Taylor & Francis, 771 Boca Raton, Florida, USA, 2011)

  40. A.H. Muhr, J.M.V. Blanshard, Int. J. Food Sci. Technol. 21(6), 683–710 (1986)

    Article  Google Scholar 

  41. M. Ramesh, S.Z. Ali, K.R. Bhattacharya, Starch/Staerke 51(8-9), 308–310 (1999)

    Article  CAS  Google Scholar 

  42. R.P. Cuevas, R.G. Gilbert, M.A. Fitzgerald, Carbohydr. Polym. 81(3), 524–532 (2010)

    Article  CAS  Google Scholar 

  43. K.L.K. Cook, R.W. Hartel, Compr. Rev. Food Sci. Food Saf. 9(2), 213–222 (2010)

    Article  Google Scholar 

  44. C.E. Smith, H.G. Schwartzberg, Biotechnol. Prog. 1(2), 111–120 (1985)

    Article  CAS  PubMed  Google Scholar 

  45. R.L. Sutton, I.D. Evans, J.F. Crilly, J. Food Sci. 59(6), 1227–1233 (1994)

    Article  CAS  Google Scholar 

  46. R. W. Hartel, in Prop. Water Foods ISOPOW 6 (Springer US), Boston, MA, 1998), pp. 287–319

  47. O. Miyawaki, T. Yano, T. Abe, Biosci. Biotechnol. Biochem. 56(6), 953–957 (1992)

    Article  CAS  PubMed  Google Scholar 

  48. R. Kobayashi, N. Kimizuka, M. Watanabe, T. Suzuki, Int. J. Refrig. 60, 270–277 (2015)

    Article  Google Scholar 

  49. Z. Zhang, X.Y. Liu, Chem. Soc. Rev. 47(18), 7116–7139 (2018)

    Article  CAS  PubMed  Google Scholar 

  50. N. Du, X.Y. Liu, C.L. Hew, J. Biol. Chem. 278(38), 36000–36004 (2003)

    Article  CAS  PubMed  Google Scholar 

  51. P.L. Davies, Trends Biochem. Sci. 39(11), 548–555 (2014)

    Article  CAS  PubMed  Google Scholar 

  52. J. Barrett, Int. J. Biochem. Cell Biol. 33(2), 105–117 (2001)

    Article  CAS  PubMed  Google Scholar 

  53. R.W. Hartel, In Crystallization in Foods (Aspen Publisher, Gaithersburg, 2001)

    Google Scholar 

Download references

Acknowledgments

Kamrunnaher Monalisa would like to thank the Ministry of Education, Culture, Sports, Science and Technology of Japan (Monbukagakusho: MEXT) for providing scholarships. This work supported by JSPS KAKENHI Grant Number 20 K02321 and The Public Foundation of Elizabeth Arnold- Fuji.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoaki Hagiwara.

Ethics declarations

Conflict of Interest

Authors have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monalisa, K., Shibata, M. & Hagiwara, T. Ice Recrystallization Behavior of Corn Starch/Sucrose Solutions: Effects of Addition of Corn Starch and Antifreeze Protein III. Food Biophysics 16, 229–236 (2021). https://doi.org/10.1007/s11483-020-09664-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-020-09664-6

Keywords

Navigation