Skip to main content
Log in

Effect of Setophoma terrestris, Sclerotium cepivorum, and Trichoderma spp. on in vitro onion (Allium cepa) root tissues and the final yield at the field

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Trichoderma is a rhizosphere fungus widely used in agriculture due to the variety of mechanisms of biological control. It can establish a direct relationship with the plant root cells, modifying the morphology and physiological processes, conferring a better defensive capacity against the attack of pathogens in the soil. This research aimed to study the interaction of T. asperellum, T. harzianum, T. virens, Setophoma terrestris and Sclerotium cepivorum on onion roots (Allium cepa), both in vitro and in field trials, to evaluate the histological modifications and the effect on in vitro growth promotion, and to test the effect of Trichoderma in the field, over the incidence of these pathogens and the crops harvest. In vitro plant promotion assay was made using T. asperellum, T. harzianum, and T. virens to test their effect on the development of onion seedlings from disinfected seeds. Roots of these plants were subjected to histological analysis using Transmission Electronic Microscopy (TEM) to examine changes in cell structure. This analysis also included the pathogens S. cepivorum and S. terrestris, the major soilborne pathogens of onion worldwide. To verify the effect of the Trichoderma species used in the study, a field experiments were performed where the fresh and dry weight of onion bulbs and the incidence of pathogens were measured. Histological modifications were observed in the root cells in the different treatments and were related to the effects caused for Trichoderma. It was shown that although T. asperellum did not stimulate in vitro root growth it can have an important effect in the field by reducing the incidence of S. cepivorum and S. terrestris while improving the onion’s harvest. On the contrary, species that have a root promoting effect do not necessarily improved yield. Besides, rather than this study, there are no other histological studies published in the onion- S. terrestris pathosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Al-Ani, L. K. T. (2018). Trichoderma from extreme environments: Physiology, diversity, and antagonistic activity. In Extremophiles in Eurasian Ecosystems: Ecology, Diversity, and Applications (pp. 389–403). Singapore: Springer.

    Google Scholar 

  • Aloni, R. (2001). Foliar and axial aspects of vascular differentiation - hypotheses and evidence. Journal of Plant Growth Regulation, 20, 22–34. https://doi.org/10.1007/s003440010001.

    Article  CAS  Google Scholar 

  • Aloni, R., Schwalm, K., Langhans, M., & Ullrich, C. (2003). Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta, 216, 841–853. https://doi.org/10.1007/s00425-002-0937-8.

    Article  CAS  PubMed  Google Scholar 

  • Bae, H., Sicher, R., Kim, M., Kim, S., Strem, M., Melnick, R., & Bailey, B. (2009). The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. Journal of Experimental Botany, 60, 3279–3295. https://doi.org/10.1093/jxb/erp165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bal, U., & Altintas, S. (2008). Effects of Trichoderma harzianum on lettuce in protected cultivation. Journal of Central European Agriculture, 9(1), 63–70.

    Google Scholar 

  • Berger, S., Papadopoulos, M., Schreiber, U., Kaiser, W., & Roitsch, T. (2004). Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiologia Plantarum, 122, 419–428. https://doi.org/10.1111/j.1399-3054.2004.00433.x.

    Article  CAS  Google Scholar 

  • Çağlayan, K., Medina, V., Gazel, M., Serçe, Ç., Serrano, L., Achon, A., Soylu, S., Çalışkan, O., & Gumus, M. (2009). Putative agents of fig mosaic disease in Turkey. Turkish Journal of Agriculture and Forestry, 33, 469–476.

    Google Scholar 

  • Cai, F., Yu, G., Wang, P., Wei, Z., Fu, L., Shen, Q., & Chen, W. (2013). Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiology and Biochemistry, 73, 106–113.

    CAS  PubMed  Google Scholar 

  • Castellano, M., Gattoni, G., Minafra, A., Conti, M., & Martelli, G. (2007). Fig mosaic in Mexico and South Africa. Journal of Plant Pathology, 89(3), 441–444.

    CAS  Google Scholar 

  • Clarkson, J. P., Payne, T., Mead, A., & Whipps, J. M. (2002). Selection of fungal biological control agents of Sclerotium cepivorum for control of white rot by sclerotial degradation in a UK soil. Plant Pathology, 51(6), 735–745.

    Google Scholar 

  • Contreras, H., Macías, L., Cortés, C., & López, J. (2009). Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an Auxin-dependent mechanism in Arabidopsis. Plant Physiology, 149, 1579–1592. https://doi.org/10.1104/pp.108.130369.

    Article  CAS  Google Scholar 

  • Contreras-Cornejo, H. A., Ortiz-Castro, R., López-Bucio, J., & Mukherjee, P. K. (2013). Promotion of plant growth and the induction of systemic defense by Trichoderma: Physiology, genetics, and gene expression. Trichoderma: Biology and Applications, 175, 96.

    Google Scholar 

  • Contreras-Cornejo, H. A., Macías-Rodríguez, L., López-Bucio, J. S., & López-Bucio, J. (2014). Enhanced plant immunity using Trichoderma. In Biotechnology and Biology of Trichoderma (pp. 495–504). Amsterdam: Elsevier.

  • Contreras-Cornejo, H. A., López-Bucio, J. S., Méndez-Bravo, A., Macías-Rodríguez, L., Ramos-Vega, M., Guevara-García, Á. A., & López-Bucio, J. (2015). Mitogen-activated protein kinase 6 and ethylene and auxin signaling pathways are involved in Arabidopsis root-system architecture alterations by Trichoderma atroviride. Molecular Plant-Microbe Interactions, 28(6), 701–710.

    CAS  PubMed  Google Scholar 

  • Coşkuntuna, A., & Özer, N. (2008). Biological control of onion basal rot disease using Trichoderma harzianum and induction of antifungal compounds in onion set following seed treatment. Crop Protection, 27(3–5), 330–336.

    Google Scholar 

  • Coventry, E., Noble, R., Mead, A., & Whipps, J. M. (2002). Control of Allium white rot (Sclerotium cepivorum) with composted onion waste. Soil Biology and Biochemistry, 34(7), 1037–1045.

    CAS  Google Scholar 

  • Deacon, J. W. (2006). Fungal Biology (4th ed.). Oxford: Blackwell Publishing.

    Google Scholar 

  • Debenest, T., Silvestre, J., Coste, M., & Pinelli, E. (2010). Effects of pesticides on freshwater diatoms. Reviews of Environmental Contamination and Toxicology, 203, 87–103.

    CAS  PubMed  Google Scholar 

  • del Milagro Granados, M. (2005). Pudrición blanca de la cebolla: una enfermedad difícil de combatir. Agronomía costarricense: Revista de ciencias agrícolas, 29(2), 143–156.

    Google Scholar 

  • Elbeaino, T., Digiaro, M., Alabdullah, A., Stradis, A., Minafra, A., Mielke, N., Castellano, A., & Martelli, G. (2009). A multipartite single-stranded negative-sense RNA virus is the putative agent of fig mosaic disease. Journal of General Virology, 90, 1281–1288.

    CAS  Google Scholar 

  • Fiorentino, N., Ventorino, V., Woo, S. L., Pepe, O., De Rosa, A., Gioia, L., ... & Rouphael, Y. (2018). Trichoderma-based biostimulants modulate rhizosphere microbial populations and improve N uptake efficiency, yield and nutritional quality of leafy vegetables. Frontiers in Plant Science, 9, 743.

  • Ghaffar, A. (1976). Inhibition of fungi as affected by oxalic acid production by Sclerotium delphinii. Pakistan Journal of Botany, 8, 69–73.

    CAS  Google Scholar 

  • Ghorbanpour, M., Omidvari, M., Abbaszadeh-Dahaji, P., Omidvar, R., & Kariman, K. (2018). Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biological Control, 117, 147–157.

    Google Scholar 

  • Gravel, V., Antoun, H., & Tweddell, R. (2007). Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA). Soil Biology and Biochemistry, 39, 1968–1977. https://doi.org/10.1016/j.soilbio.2007.02.015.

    Article  CAS  Google Scholar 

  • Guzmán-Guzmán, P., Porras-Troncoso, M. D., Olmedo-Monfil, V., & Herrera-Estrella, A. (2018). Trichoderma species: Versatile plant symbionts. Phytopathology, 109(1), 6–16.

    PubMed  Google Scholar 

  • Harman, G. E. (2000). Myths and dogmas of biocontrol. Changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disease, 84, 377–393.

    CAS  PubMed  Google Scholar 

  • Harman, G. E. (2006). Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96(2), 190–194.

    CAS  PubMed  Google Scholar 

  • Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species—Opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43–56.

    CAS  PubMed  Google Scholar 

  • Harman, G. E., Bjorkman, T., Ondik, K., & Shoresh, M. (2008). Changing paradigms on the mode of action and ¨uses of Trichoderma spp. for biocontrol. Outlooks on Pest Management, 19, 24–29.

    Google Scholar 

  • Hermosa, R., Viterbo, A., Chet, I., & Monte, E. (2012). Plant-beneficial effects of Trichoderma and its genes. Microbiology, 158(1), 17–25.

    CAS  PubMed  Google Scholar 

  • Hermosa, R., Rubio, M., Cardoza, R., Nicolás, C., Monte, E., & Gutiérrez, S. (2013). The contribution of Thichoderma to balancing the costs of plant growth and defense. International Microbiology, 16, 69–80. https://doi.org/10.2436/20.1501.01.181.

    Article  CAS  PubMed  Google Scholar 

  • Jung, J. H., Kim, S. W., Min, J. S., Kim, Y. J., Lamsal, K., Kim, K. S., & Lee, Y. S. (2010). The effect of nano-silver liquid against the white-rot of the green onion caused by Sclerotium cepivorum. Mycobiology, 38(1), 39–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Köhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, 10, 845.

    PubMed  PubMed Central  Google Scholar 

  • Lane, S. D., & Bowen, N. J. (2005). Revisiting the use of Iprodione and Trichoderma in the integrated management of onion white rot. Archives of Phytopathology and Plant Protection, 38(2), 133–138.

    Google Scholar 

  • Lomax, T. L., Munday, G. K., & Rubery, P. H. (2010). Auxin transport. In-Plant Hormones: Biosynthesis, Signal Transduction, Action. The induction of vascular tissues by auxin. (pp. 485-506). Springer. https://doi.org/10.1007/978-1-4020-2686-7.

  • Lorito, M., Woo, S., Harman, G., & Monte, E. (2010). Translational research on Trichoderma: From ‘Omics’ to the field. Annual Review of Phytopathology, 48, 395–417. https://doi.org/10.1146/annurev-phyto-073009-114314.

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Medina, A., Appels, F. V., & van Wees, S. C. (2017). Impact of salicylic acid-and jasmonic acid-regulated defenses on root colonization by Trichoderma harzianum T-78. Plant Signaling & Behavior, 12(8), e1345404.

    Google Scholar 

  • Masum, K., Billal, M., & Hasan, M. (2017). Pathogenicity of Sclerotium Rolfsii on different host, and its over wintering survival; a mini-review. International Journal of Advances in Agriculture Sciences, 7(2), 1–6.

    Google Scholar 

  • Mendoza-Mendoza, A., Zaid, R., Lawry, R., Hermosa, R., Monte, E., Horwitz, B. A., & Mukherjee, P. K. (2018). Molecular dialogues between Trichoderma and roots: Role of the fungal secretome. Fungal Biology Reviews, 32(2), 62–85.

    Google Scholar 

  • Muday, G. K., Rahman, A., & Binder, B. M. (2012). Auxin and ethylene: Collaborators or competitors? Trends in Plant Science, 17(4), 181–195.

    CAS  PubMed  Google Scholar 

  • Mülner, P., Bergna, A., Wagner, P., Sarajlić, D., Gstöttenmayr, B., Dietel, K., Grosch, R., Cernava, T., & Berg, G. (2019). Microbiota associated with sclerotia of soilborne fungal pathogens–a novel source of biocontrol agents producing bioactive volatiles. Phytobiomes Journal, 3(2), 125–136.

    Google Scholar 

  • Netzer, D., Rabinowitch, H. D., & Weintal, C. H. (1985). Greenhouse technique to evaluate onion resistance to pink root. Euphytica, 34(2), 385–391.

    Google Scholar 

  • Orio, A. G. A., Brücher, E., & Ducasse, D. A. (2016). A strain of Bacillus subtilis subsp. subtilis shows a specific antagonistic activity against the soil-borne pathogen of onion Setophoma terrestris. European Journal of Plant Pathology, 144(1), 217–223.

    Google Scholar 

  • Ortega-García, J. G., Montes-Belmont, R., Rodríguez-Monroy, M., Ramírez-Trujillo, J. A., Suárez-Rodríguez, R., & Sepúlveda-Jiménez, G. (2015). Effect of Trichoderma asperellum applications and mineral fertilization on growth promotion and the content of phenolic compounds and flavonoids in onions. Scientia Horticulturae, 195, 8–16.

    Google Scholar 

  • Pascale, A., Vinale, F., Manganiello, G., Nigro, M., Lanzuise, S., Ruocco, M., Marra, R., Lombardi, N., Woo, S. L., & Lorito, M. (2017). Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Protection, 92, 176–181.

    CAS  Google Scholar 

  • Punja, Z., & Damiani, A. (1996). Comparative growth, morphology, and physiology of three Sclerotium species. Mycologia, 88(47), 694–706.

    Google Scholar 

  • Rivera-Mendez, W., Fuentes-Alfaro, R., Courrau-López, K., Aguilar-Ulloa, W., Zúñiga-Vega, C., & Brenes-Madriz, J. (2019). Biological control of Setophoma terrestris isolated from onion rhizosphere in Costa Rica. Archives of Phytopathology and Plant Protection, 52(7–8), 813–824.

    CAS  Google Scholar 

  • Rivera-Méndez, W., Obregón, M., Morán-Diez, M. E., Hermosa, R., & Monte, E. (2020). Trichoderma asperellum biocontrol activity and induction of systemic defenses against Sclerotium cepivorum in onion plants under tropical climate conditions. Biological Control, 141, 104145.

    Google Scholar 

  • Roitsch, T., Balibrea, M., Hofmann, M., Proels, R., & Sinha, A. (2003). Extracellular invertase: Key metabolic enzyme and PR protein. Journal of Experimental Botany, 54, 513–524. https://doi.org/10.1093/jxb/erg050.

    Article  CAS  PubMed  Google Scholar 

  • Sayago, P., Juncosa, F., Albarracín, A., Luna, D., Molina, G., Lafi, J., & Ducassse, D. (2019). Bacillus subtilis ALBA01 can mitigate onion pink root symptoms caused by Setophoma terrestris. bioRxiv. https://doi.org/10.1101/601633.

  • Segarra, G., Casanova, E., Bellido, D., Odena, M. A., Oliveira, E., & Trillas, I. (2007a). Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics, 7(21), 3943–3952.

    CAS  PubMed  Google Scholar 

  • Segarra, G., Casanova, E., Bellido, D., Odena, M. A., Oliveira, E., & Trillas, I. (2007b). Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics, 7, 3943–3952.

    CAS  PubMed  Google Scholar 

  • Sharon, E., Chet, I., & Spiegel, Y. (2009). Improved attachment and parasitism of Trichoderma on Meloidogyne javanica in vitro. European Journal of Plant Pathology, 123, 291–299.

    CAS  Google Scholar 

  • Shoresh, M., & Harman, G. E. (2008). The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: A proteomic approach. Plant Physiology, 147, 2147–2163.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shoresh, M., Harman, GE y Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21–43.

  • Stewart, A., & Hill, R. (2014). Applications of Trichoderma in plant growth promotion. In Biotechnology and biology of Trichoderma (pp. 415–428). Amsterdam: Elsevier.

    Google Scholar 

  • Teshika, J. D., Zakariyyah, A. M., Zaynab, T., Zengin, G., Rengasamy, K. R., Pandian, S. K., & Fawzi, M. M. (2019). Traditional and modern uses of onion bulb (Allium cepa L.): A systematic review. Critical Reviews in Food Science and Nutrition, 59(sup1), S39–S70.

    CAS  PubMed  Google Scholar 

  • Tucci, M., Ruocco, M., De Masi, L., De Palma, M., & Lorito, M. (2011). The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Molecular Plant Pathology, 12(4), 431–354. https://doi.org/10.1111/j.1364-3703.2010.00674.x.

    Article  Google Scholar 

  • Ulacio-Osorio, D., Zavaleta-Mejía, E., Martínez-Garza, A., & Pedroza-Sandoval, A. (2006). Strategies for management of Sclerotium cepivorum Berk. in garlic [Allium sativum L.; Mexico]. Journal of Plant Pathology (Italy), 88(3), 253–261.

  • Waller, F., Achatz, B., Baltruschat, H., Fodor, J., & Becker, K. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. PNAS, 102, 13386–13391.

    CAS  PubMed  Google Scholar 

  • Woo, S. L., Scala, F., Ruocco, M., & Lorito, M. (2006). The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi, and plants. Phytopathology, 96, 181–185.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Costa Rican Government and the Costa Rica Institute of Technology (ITCR) for funding this research.

Code availability (software application or custom code)

Not applicable.

Funding

This work was supported by the Costa Rican Government [Project FITTACORI F03–18] and the Costa Rica Institute of Technology (ITCR) [Project VIE 1510098].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Rivera-Mendez W, Brenes-Madriz J, Alvarado-Marchena L; Data curation: Rivera-Mendez W, Alvarado-Marchena L; Formal analysis: Rivera-Mendez W, Alvarado-Marchena L; Funding acquisition: Brenes-Madriz J, Rivera-Mendez W; Investigation: Rivera-Mendez W, Brenes-Madriz J, Alvarado-Marchena L; Methodology: Rivera-Mendez W, Brenes-Madriz J, Alvarado-Marchena L; Project administration: Brenes-Madriz J; Resources: Rivera-Mendez W, Brenes-Madriz J, Alvarado-Marchena L; Supervision: Rivera-Mendez W, Alvarado-Marchena L; Validation: Rivera-Mendez W, Alvarado-Marchena L; Roles/Writing – original draft: Rivera-Mendez W, Brenes-Madriz J, Alvarado-Marchena L; Writing – review & editing: Rivera-Mendez W, Brenes-Madriz J, Alvarado-Marchena L.

Corresponding author

Correspondence to William Rivera-Méndez.

Ethics declarations

Research involving human participants and/or animals

Not applicable.

Ethical approval

The authors bear all the ethical responsibilities of this manuscript.

Informed consent

Not applicable.

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera-Méndez, W., Brenes-Madriz, J. & Alvarado-Marchena, L. Effect of Setophoma terrestris, Sclerotium cepivorum, and Trichoderma spp. on in vitro onion (Allium cepa) root tissues and the final yield at the field. Eur J Plant Pathol 160, 53–65 (2021). https://doi.org/10.1007/s10658-021-02220-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02220-z

Keywords

Navigation