Skip to main content
Log in

Multifunctional inverter based on virtual synchronous machine implemented in synchronous reference frame

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

A new multifunctional inverter control structure is proposed in this paper by embedding the harmonic and unbalance regulators into the virtual synchronous machine (VSM). While including the harmonic and unbalance regulators, inverters can provide support to the grid not only as VSMs, but also as active power filters (APFs) and unbalance conditioners. Different from the traditional multifunctional inverter in the stationary frame, the proposed method is implemented in the synchronous reference frame using the vector proportional-integral controllers without high pass filter for APF. Moreover, with VSM for power control and frequency tracking, harmonic and unbalance regulators can use the phase tracked by VSM so that the adaptive control is achieved regardless of the frequency variations. As a result, the simplified control structure with more operation modes is available without phase-locked loop (PLL) and unbalance regulators can reuse the voltage/current control of positive sequence. Furthermore, control decoupling condition of different functions is analysed to ensure the independent design of each function. Finally, the proposed structure is verified by MATLAB/Simulink and experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Zhong Q-C (2017) Power electronics-enabled autonomous power systems: architecture and technical routes. IEEE Trans Ind Electron 67(7):5907–5918

    Article  Google Scholar 

  2. Rocabert J, Luna A, Blaabjerg F et al (2012) Control of power converters in AC microgrids. IEEE Trans Power Electron 27(11):4734–4749

    Article  Google Scholar 

  3. Debrabandere K, Bolsens B, Van Den Keybus J et al (2007) A voltage and frequency droop control method for parallel inverters. IEEE Trans Power Electron 22(4):1107–1115

    Article  Google Scholar 

  4. Tuladhar A, Jin H, Unger T et al (2000) Control of parallel inverters in distributed AC power systems with consideration of line impedance effect. IEEE Trans Ind Appl 36(1):131–138

    Article  Google Scholar 

  5. Li Y, Li YW (2011) Power management of inverter interfaced autonomous microgrid based on virtual frequency–voltage frame. IEEE Trans Smart Grid 2(1):30–40

    Article  Google Scholar 

  6. Mohamed ARI, El-Saadany EF (2008) Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids. IEEE Trans Power Electron 23(6):2806–2816

    Article  Google Scholar 

  7. Pan R, Sun P (2019) Microgrid power sharing using variable droop coefficient control. In: IEEE 10th international symposium on power electronics for distributed generation, Xi’an, pp 659–664

  8. Soni N, Doolla S, Chandorkar MC (2013) Improvement of transient response in microgrids using virtual inertia. IEEE Trans Power Del 28(3):1830–1838

    Article  Google Scholar 

  9. Gao F, Iravani MR (2008) A control strategy for a distributed generation unit in grid-connected and autonomous modes of operation. IEEE Trans Power Del 23(2):850–859

    Article  Google Scholar 

  10. Zhong Q-C, Nguyen P-L, Ma Z et al (2014) Self-synchronized synchronverters: inverters without a dedicated synchronization unit. IEEE Trans Power Electron 29(2):617–630

    Article  Google Scholar 

  11. Alipoor J, Miura Y, Ise T (2015) Power system stabilization using virtual synchronous generator with alternating moment of inertia. IEEE J Emerg Sel Top Power Electron 3(2):451–458

    Article  Google Scholar 

  12. Liu J, Miura Y, Ise T (2016) Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators. IEEE Trans Power Electron 31(5):3600–3611

    Article  Google Scholar 

  13. Pan R, Sun P (2018) Extra transient block for virtual synchronous machine with better performance. IET Gener Transm Distrib. https://doi.org/10.1049/iet-gtd.2018.6990

    Article  Google Scholar 

  14. Camposgaona D, Penaalzola R, Monroymorales JL et al (2017) Fast selective harmonic mitigation in multifunctional inverters using internal model controllers and synchronous reference frames. IEEE Trans Ind Electron 64(8):6338–6349

    Article  Google Scholar 

  15. Lascu C, Asiminoaei L, Boldea I et al (2007) High performance current controller for selective harmonic compensation in active power filters. IEEE Trans Power Electron 22(5):1826–1835

    Article  Google Scholar 

  16. He J, Li YW, Wang X et al (2014) Active harmonic filtering using current controlled grid-connected DG units with closed-loop power control. IEEE Trans Power Electron 29(2):642–653

    Google Scholar 

  17. Bojoi RI, Limongi LR, Roiu D et al (2011) Enhanced power quality control strategy for single-phase inverters in distributed generation systems. IEEE Trans Power Electron 26(3):798–806

    Article  Google Scholar 

  18. Mattavelli P, Marafao FP (2004) Repetitive-based control for selective harmonic compensation in active power filters. IEEE Trans Ind Electron 51(5):1018–1024

    Article  Google Scholar 

  19. Vasquez JC, Mastromauro RA, Guerrero JM et al (2009) Voltage support provided by a droop-controlled multifunctional inverter. IEEE Trans Ind Electron 56(11):4510–4519

    Article  Google Scholar 

  20. Zhong Q-C (2013) Harmonic droop controller to reduce the voltage harmonics of inverters. IEEE Trans Ind Electron 60(3):936–945

    Article  Google Scholar 

  21. He J, Li YW, Blaabjerg F (2015) An enhanced islanding microgrid reactive power, imbalance power, and harmonic power sharing scheme. IEEE Trans Power Electron 30(6):3389–3401

    Article  Google Scholar 

  22. He J, Li YW, Guerrero JM et al (2013) An islanding microgrid power sharing approach using enhanced virtual impedance control scheme. IEEE Trans Power Electron 28(11):5272–5282

    Article  Google Scholar 

  23. Cheng PT, Chen CA, Lee TL et al (2009) A cooperative imbalance compensation method for distributed-generation interface converters. IEEE Trans Ind Appl 45(2):805–815

    Article  Google Scholar 

  24. Song HS, Nam KH (1999) Dual current control scheme for PWM converter under unbalanced input voltage conditions. IEEE Trans Ind Electron 46(5):953–959

    Article  Google Scholar 

  25. Savaghebi M, Jalilian A, Vasquez JC et al (2013) Autonomous voltage unbalance compensation in an islanded droop controlled microgrid. IEEE Trans Ind Electron 60(4):1390–1402

    Article  Google Scholar 

  26. Nejabatkhah F, Li Y, Sun K (2018) Parallel three-phase interfacing converters operation under unbalanced voltage in hybrid AC/DC microgrid. IEEE Trans Smart Grid 9(2):1310–1322

    Article  Google Scholar 

  27. Gajanayake CJ, Vilathgamuwa DM, Loh PC et al (2009) Z-source-inverter-based flexible distributed generation system solution for grid power quality improvement. IEEE Trans Energy Convers 24(3):695–704

    Article  Google Scholar 

  28. He J, Li YW (2013) Hybrid voltage and current control approach for DG-grid interfacing converters with \(LCL\) filters. IEEE Trans Ind Electron 60(5):1797–1809

    Article  Google Scholar 

  29. He J, Li YW, Blaabjerg F (2014) Flexible microgrid power quality enhancement using adaptive hybrid voltage and current controller. IEEE Trans Ind Electron 61(6):2784–2794

    Article  Google Scholar 

  30. Li Y, Vilathgamuwa DM, Loh PC (2005) Microgrid power quality enhancement using a three-phase four-wire grid-interfacing compensator. IEEE Trans Ind Appl 41(6):1707–1719

    Article  Google Scholar 

  31. Li YW, Vilathgamuwa DM, Loh PC (2006) A grid-interfacing power quality compensator for three-phase three-wire microgrid applications. IEEE Trans Power Electron 21(4):1021–1031

    Article  Google Scholar 

  32. Sun J (2009) Small-signal methods for ac distributed power systems—a review. IEEE Trans Power Electron 24(11):2545–2554

    Article  Google Scholar 

  33. Wang X, Frede B (2019) Harmonic stability in power electronic-based power systems: concept, modeling, and analysis. IEEE Trans Smart Grid 10(3):2858–2870

    Article  Google Scholar 

  34. D’Arco S, Suul JA, Fosso OB (2015) A virtual synchronous machine implementation for distributed control of power converters in smartgrids. Electron Power Syst Res 122:180–197

    Article  Google Scholar 

  35. Zmood DN, Holmes DG (2003) Stationary frame current regulation of PWM inverters with zero steady-state error. IEEE Trans Power Electron 18(3):814–822

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongcai Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, R., Sun, P. Multifunctional inverter based on virtual synchronous machine implemented in synchronous reference frame. Electr Eng 103, 2093–2111 (2021). https://doi.org/10.1007/s00202-021-01220-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-021-01220-w

Keywords

Navigation