Skip to main content
Log in

Optimal Control of Clarke Subdifferential Type Fractional Differential Inclusion with Non-instantaneous Impulses Driven by Poisson Jumps and Its Topological Properties

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

This article is devoted to studying the topological structure of a solution set for Clarke subdifferential type fractional non-instantaneous impulsive differential inclusion driven by Poisson jumps. Initially, for proving the solvability result, we use a nonlinear alternative of Leray–Schauder fixed point theorem, Gronwall inequality, stochastic analysis, a measure of noncompactness, and the multivalued analysis. Furthermore, the mild solution set for the proposed problem is demonstrated with nonemptyness, compactness, and, moreover, \(R_\delta \)-set. By employing Balder’s theorem, the existence of optimal control is derived. At last, an application is provided to validate the developed theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adly, S., Zakaryan, T.: Sensitivity properties of parametric non-convex evolution inclusions with application to optimal control problems. Set Valued Var. Anal. 27(2), 549–568 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahmed, H.M.: Approximate controllability via resolvent operators of Sobolev-type fractional stochastic integro-differential equations with fractional Brownian motion and Poisson jumps. Bull. Iran. Math. Soc. 45(4), 1045–1059 (2019)

    Article  MATH  Google Scholar 

  3. Ahmed, H.M., Wang, J.: Exact null controllability of Sobolev-type Hilfer fractional stochastic differential equations with fractional Brownian motion and Poisson jumps. Bull. Iran. Math. Soc. 44(3), 673–690 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balder, E.: Necessary and sufficient conditions for \(L_1\)-strong-weak lower semicontinuity of integral functional. Nonlinear Anal. Theory Methods Appl. 11, 1399–1404 (1987)

    MATH  Google Scholar 

  5. Bothe, D.: Multivalued perturbation of \(m-\)accerative differential inclusions. Isr. J. Math. 108, 109–138 (1998)

    MATH  Google Scholar 

  6. Clarke, F.H.: Optimization and Non Smooth Analysis. Wiley, New York (1983)

    Google Scholar 

  7. Cont, R., Tankov, P.: Financial Modeling with Jump Process, Financial Mathematics Series. Chapman and Hall/CRC, Boca Raton (2004)

    MATH  Google Scholar 

  8. Deimling, K.: Nonlinear Functional Analysis. Springer, New York (1985)

    Book  MATH  Google Scholar 

  9. Durga, N., Muthukumar, P.: Existence and exponential behavior of multi-valued nonlinear fractional stochastic integro-differential equations with Poisson jumps of Clarke’s subdifferential type. Math. Comput. Simul. 155, 347–359 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976)

    MATH  Google Scholar 

  11. Górniewicz, L.: Homological methods in fixed point theory of multivalued maps. Diss. Math. 129, 1–71 (1976)

    MATH  Google Scholar 

  12. Harrat, A., Nieto, J.J., Debbouche, A.: Solvability and optimal controls of impulsive Hilfer fractional delay evolution inclusions with Clarke subdifferential. J. Comput. Appl. Math. 344, 725–737 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hausenblas, E., Marchis, I.: A numerical approximation of parabolic stochastic partial differential equations driven by a Poisson random measure. BIT 46, 773–811 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hernández, E., O’Regan, D.: On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 141, 1641–1649 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hernández, E., O’Regan, D.: Controllability of Volterra–Fredholm type systems in Banach spaces. J. Franklin Inst. 346, 95–101 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jiang, Y.R., Huang, N.J., Yao, J.C.: Solvability and optimal control of semilinear nonlocal fractional evolution inclusion with Clarke subdifferential. Appl. Anal. 96(14), 2349–2366 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jorion, P.: On jump processes in the foreign exchange and stock markets. Rev. Financ. Stud. 1, 427–445 (1988)

    Article  Google Scholar 

  18. Kamenskii, M., Obukhowskii, V., Zecca, P.: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. Walter de Gruyter, Berlin (2001)

    Book  MATH  Google Scholar 

  19. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

    Google Scholar 

  20. Lu, L., Liu, Z., Bin, M.: Approximate controllability for stochastic evolution inclusions of Clarke’s subdifferential type. Appl. Math. Comput. 286, 201–212 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Li, A., Ye, J.J.: Necessary optimality conditions for optimal control problems with non-smooth mixed state and control constraints. Set Valued Var. Anal. 24, 449–470 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, Z., Zeng, B.: Existence and controllability for fractional evolution inclusions of Clarke’s subdifferential type. Appl. Math. Comput. 257, 178–189 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Luong, V.T.: Decay mild solutions for two-term time fractional differential equations in Banach spaces. J. Fixed Point Theory Appl. 18, 417–432 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  25. Muthukumar, P., Durga, N., Rihan, F.A., Rajivganthi, C.: Optimal control of second order stochastic evolution hemivariational inequalities with Poisson jumps. Taiwan. J Math. 21(6), 1455–1475 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Myshkis, A.D., Samoilenko, A.M.: Systems with impulses at fixed moments of time. Mat. Sb. 74, 202–208 (1967)

    MathSciNet  Google Scholar 

  27. O’Regan, D.: Nonlinear alternatives for multivalued maps with applications to operator inclusions in abstract spaces. Proc. Am. Math. Soc. 127, 3557–3564 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Obukhovski, V., Zecca, P.: Controllability for systems governed by semilinear differential inclusions in a Banach space with a noncompact semigroup. Nonlinear Anal. 70, 3424–3436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  30. Shengda, L., Wang, J., Zhou, Y.: Optimal control of non-instantaneous impulsive differential equations. J. Franklin Inst. 354(17), 7668–7698 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shah, V., George, R.K., Sharma, J., Muthukumar, P.: Existence and uniqueness of classical and mild solutions of generalized impulsive evolution equation. Int. J. Nonlinear Sci. Numer. Simul. 19, 775–780 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tamilalagan, P., Balasubramaniam, P.: The solvability and optimal controls for fractional stochastic differential equations driven by Poisson jumps via resolvent operators. Appl. Math. Optim. 77, 443–462 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, J., Ibrahim, A.G., O’Regan, D.: Topological structure of the solution set for fractional non-instantaneous impulsive evolution inclusions. J. Fixed Point Theory Appl. 20(2), 59 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yan, Z., Lu, F.: Existence of optimal mild solutions for multi-valued impulsive stochastic partial functional integro-differential equations. Bull. Iran. Math. Soc. 44(5), 1351–1386 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhou, Y., Peng, L., Ahmad, B.: Topological properties of solution sets for stochastic evolution inclusions. Stoch. Anal. Appl. 36(1), 114–137 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Muthukumar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Additional information

Communicated by Sohrab Effati.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by Council of Scientific and Industrial Research (CSIR), Govt. of India under EMR Project, F.No: 25(0273)/17/EMR-II dated 27-04-2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durga, N., Muthukumar, P. Optimal Control of Clarke Subdifferential Type Fractional Differential Inclusion with Non-instantaneous Impulses Driven by Poisson Jumps and Its Topological Properties. Bull. Iran. Math. Soc. 47 (Suppl 1), 271–305 (2021). https://doi.org/10.1007/s41980-020-00492-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-020-00492-5

Keywords

Mathematics Subject Classification

Navigation