Skip to main content
Log in

Denoising of Electrocardiogram Signal Using S-Transform Based Time–Frequency Filtering Approach

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Electrocardiogram (ECG) signals are damaged by various types of noise during acquisition and transmission which may mislead the analysis. In this paper, an automated denoising technique based on time–frequency filtering approach is proposed. The S-transform based time–frequency method with morphological processing is employed to visualize the spectrum of the ECG signal. The time–frequency plane is surface fitted to estimate the noise and then a threshold is used to eliminate it. The proposed method has been assessed with numerous abnormal and normal ECG signals selected from the MIT-BIH normal sinus rhythm database. Several noises with varying signal-to-noise ratio are considered for the simulation study. The results showed that the proposed technique is superior to the existing wavelet-based approach. It significantly reduces the mean square error, percentage root mean square difference and improves the signal-to-noise ratio (SNR). Moreover, at lower SNR condition, the proposed approach efficiently suppresses the noise. In the proposed approach, the requirement of the reference signal is eliminated; and at the same time, the structural information is preserved in the denoised signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rangayyan, R.M.: Biomedical Signal Analysis: A Case-Study Approach | Wiley. Wiley, Hoboken (2010)

    Google Scholar 

  2. Friesen, G.M.; Jannett, T.C.; Jadallah, M.A.; Yates, S.L.; Quint, S.R.; Nagle, H.T.: A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Trans. Biomed. Eng. 37, 85–98 (1990). https://doi.org/10.1109/10.43620

    Article  Google Scholar 

  3. Sayadi, O.; Shamsollahi, M.B.: Model-based fiducial points extraction for baseline wandered electrocardiograms. IEEE Trans. Biomed. Eng. 55, 347–351 (2008). https://doi.org/10.1109/TBME.2007.899302

    Article  Google Scholar 

  4. Wang, J.; Ye, Y.; Pan, X.; Gao, X.; Zhuang, C.: Fractional zero-phase filtering based on the Riemann–Liouville integral. Signal Process. 98, 150–157 (2014). https://doi.org/10.1016/j.sigpro.2013.11.024

    Article  Google Scholar 

  5. Dliou, A.; Latif, R.; Laaboubi, M.; Maoulainine, F.M.R.: Abnormal ECG signals analysis using non-parametric time–frequency techniques. Arab. J. Sci. Eng. 39, 913–921 (2014). https://doi.org/10.1007/s13369-013-0687-x

    Article  Google Scholar 

  6. Smital, L.; Vítek, M.; Kozumplík, J.; Provazník, I.: Adaptive wavelet wiener filtering of ECG signals. IEEE Trans. Biomed. Eng. 60, 437–445 (2013). https://doi.org/10.1109/TBME.2012.2228482

    Article  Google Scholar 

  7. Luo, Y.; Hargraves, R.H.; Belle, A.; Bai, O.; Qi, X.; Ward, K.R.; Pfaffenberger, M.P.; Najarian, K.: A hierarchical method for removal of baseline drift from biomedical signals: application in ECG analysis. Sci. World J. 2013, 896056 (2013). https://doi.org/10.1155/2013/896056

    Article  Google Scholar 

  8. AlMahamdy, M.; Riley, H.B.: Performance study of different denoising methods for ECG signals. In: Procedia Computer Science, pp. 325–332. Elsevier BV (2014)

  9. Thakor, N.V.; Zhu, Y.S.: Applications of adaptive filtering to ECG analysis: noise cancellation and arrhythmia detection. IEEE Trans. Biomed. Eng. 38, 785–794 (1991). https://doi.org/10.1109/10.83591

    Article  Google Scholar 

  10. George, N.V.; Sahu, S.S.; Mansinha, L.; Tiampo, K.F.; Panda, G.: Time localised band filtering using modified S-transform. In: 2009 International Conference on Signal Processing Systems, ICSPS 2009, pp. 42–46 (2009)

  11. Poornachandra, S.: Wavelet-based denoising using subband dependent threshold for ECG signals. Digit. Signal Process. A Rev. J. 18, 49–55 (2008). https://doi.org/10.1016/j.dsp.2007.09.006

    Article  Google Scholar 

  12. Tzabazis, A.; Eisenried, A.; Yeomans, D.C.; Hyatt, M.I.: Wavelet analysis of heart rate variability: impact of wavelet selection. Biomed. Signal Process. Control. 40, 220–225 (2018). https://doi.org/10.1016/j.bspc.2017.09.027

    Article  Google Scholar 

  13. Sameni, R.; Shamsollahi, M.B.; Jutten, C.; Clifford, G.D.: A nonlinear Bayesian filtering framework for ECG denoising. IEEE Trans. Biomed. Eng. 54, 2172–2185 (2007). https://doi.org/10.1109/TBME.2007.897817

    Article  MATH  Google Scholar 

  14. Paul, J.S.; Ramasubba Reddy, M.; Kumar, V.J.: A transform domain SVD filter for suppression of muscle noise artefacts in exercise ECG’s. IEEE Trans. Biomed. Eng. 47, 654–663 (2000). https://doi.org/10.1109/10.841337

    Article  Google Scholar 

  15. Mishra, A.; Singh, A.K.; Sahu, S.S.: ECG signal denoising using time-frequency based filtering approach. In: International Conference on Communication and Signal Processing, ICCSP 2016, pp. 503–507. Institute of Electrical and Electronics Engineers Inc (2016)

  16. Blanco-Velasco, M.; Weng, B.; Barner, K.E.: ECG signal denoising and baseline wander correction based on the empirical mode decomposition. Comput. Biol. Med. 38, 1–13 (2008). https://doi.org/10.1016/j.compbiomed.2007.06.003

    Article  Google Scholar 

  17. So-In, C.; Phaudphut, C.; Rujirakul, K.: Real-time ECG noise reduction with QRS complex detection for mobile health services. Arab. J. Sci. Eng. 40, 2503–2514 (2015). https://doi.org/10.1007/s13369-015-1658-1

    Article  Google Scholar 

  18. Rakshit, M.; Das, S.: An efficient ECG denoising methodology using empirical mode decomposition and adaptive switching mean filter. Biomed. Signal Process. Control. 40, 140–148 (2018). https://doi.org/10.1016/j.bspc.2017.09.020

    Article  Google Scholar 

  19. García, C.A.; Otero, A.; Vila, X.; Márquez, D.G.: A new algorithm for wavelet-based heart rate variability analysis. Biomed. Signal Process. Control. 8, 542–550 (2013). https://doi.org/10.1016/j.bspc.2013.05.006

    Article  Google Scholar 

  20. Erçelebi, E.: Electrocardiogram signals de-noising using lifting-based discrete wavelet transform. Comput. Biol. Med. 34, 479–493 (2004). https://doi.org/10.1016/S0010-4825(03)00090-8

    Article  Google Scholar 

  21. Li, S.; Lin, J.: The optimal de-noising algorithm for ECG using stationary wavelet transform. In: 2009 WRI World Congress on Computer Science and Information Engineering, CSIE 2009, pp. 469–473 (2009)

  22. Das, M.K.; Ari, S.: Analysis of ECG signal denoising method based on S-transform. IRBM. 34, 362–370 (2013). https://doi.org/10.1016/j.irbm.2013.07.012

    Article  Google Scholar 

  23. Vargas, R.N.; Veiga, A.C.P.: Electrocardiogram signal denoising by a new noise variation estimate. Res. Biomed. Eng. 36, 13–20 (2020). https://doi.org/10.1007/s42600-019-00033-y

    Article  Google Scholar 

  24. Stockwell, R.G.: A basis for efficient representation of the S-transform. Digit. Signal Process. A Rev. J. 17, 371–393 (2007). https://doi.org/10.1016/j.dsp.2006.04.006

    Article  Google Scholar 

  25. Stockwell, R.G.: Localization of the complex spectrum: the s transform. IEEE Trans. Signal Process. 44, 993 (1996). https://doi.org/10.1109/78.492555

    Article  Google Scholar 

  26. Raković, P.; Sejdić, E.; Stanković, L.J.; Jiang, J.: Time–frequency signal processing approaches with applications to heart sound analysis. Comput. Cardiol. 33, 197–200 (2006)

    Google Scholar 

  27. Pinnegar, C.R.; Eaton, D.W.: Application of the S transform to prestack noise attenuation filtering. J. Geophys. Res. Solid Earth. (2003). https://doi.org/10.1029/2002jb002258

    Article  Google Scholar 

  28. Dash, P.K.; Panigrahi, B.K.; Panda, G.: Power quality analysis using S-transform. IEEE Trans. Power Deliv. 18, 406–411 (2003). https://doi.org/10.1109/TPWRD.2003.809616

    Article  Google Scholar 

  29. McFadden, P.D.; Cook, J.G.; Forster, L.M.: Decomposition of gear vibration signals by the generalized S transform. Mech. Syst. Signal Process. 13, 691–707 (1999). https://doi.org/10.1006/mssp.1999.1233

    Article  Google Scholar 

  30. Kabir, M.A.; Shahnaz, C.: Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains. Biomed. Signal Process. Control. 7, 481–489 (2012). https://doi.org/10.1016/j.bspc.2011.11.003

    Article  Google Scholar 

  31. Donoho, D.: Denoising by soft thresholding. IEEE Trans. Inform. Theory 41, 612–627 (1995)

    Article  Google Scholar 

  32. Chu, C.H.H.; Delp, E.J.: Impulsive noise suppression and background normalization of electrocardiogram signals using morphological operators. IEEE Trans. Biomed. Eng. 36, 262–273 (1989). https://doi.org/10.1109/10.16474

    Article  Google Scholar 

  33. Sahu, S.S.; Panda, G.; George, N.V.: An improved S-transform for time-frequency analysis. In: 2009 IEEE International Advance Computing Conference, IACC 2009, pp. 315–319 (2009)

  34. Moody, G.B.; Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20, 45–50 (2001)

    Article  Google Scholar 

  35. Moody, G.B.; Muldrow, W.E.; Mark, R.G.: The MIT-BIH noise stress test database. In: Computers in Cardiology, pp. 381–384 (1984)

Download references

Acknowledgements

This work has been carried out in Signal Processing Lab, Department of Electronics and Communication Engineering, Birla Institute of Technology, Mesra, Ranchi, India. The study has been funded by NPIU, MHRD, Govt. of India Grant # 1-5737336180.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A., Sahu, S.S., Sharma, R. et al. Denoising of Electrocardiogram Signal Using S-Transform Based Time–Frequency Filtering Approach. Arab J Sci Eng 46, 9515–9525 (2021). https://doi.org/10.1007/s13369-021-05333-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05333-z

Keywords

Navigation