Skip to main content
Log in

Intense orange emission from hydrothermally synthesized ZnO flower-like structure: effect of charge carrier—LO phonon interaction on emission characteristics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Easy control of electronic and optical properties of ZnO is pivotal for its various optoelectronic applications. The present manuscript illustrates preparation of flower- and needle-like microstructures of ZnO by simple hydrothermal technique using Zn(NO3)2 and NaOH as precursors. The method is found to be suitable to generate different ZnO microstructures just by changing NaOH concentration. Other parameters such as reaction temperature, time have no significant effect other than change of size of the microstructures. After careful analyses of the microstructures by Raman spectroscopy, it appears that charge carrier—LO phonon interaction which plays important role in optoelectronic properties decreases with increasing NaOH concentration. Photoluminescence spectroscopic data depict that the synthesized microstructures exhibit intense and tunable orange emission at 620 nm, attributed to interstitial oxygen defects. The present protocol is found to be very effective to control defects of ZnO microstructures; particularly, it seems to be very sensitive to control oxygen interstitial. Full width at half maxima (FWHM), an important parameter of any optical emission, is observed to be decreasing with increasing NaOH. A theoretical model, developed on the basis of Huang—Rhys ‘S’ factor, has been developed to correlate the trend of FWHM considering charge carrier—LO phonon interaction and orbital radii of the charge carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Sarkar, C.K. Ghosh, K.K. Chattopadhyay, CrystEngComm 14, 2683 (2012)

    Article  Google Scholar 

  2. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Nature 409, 66 (2001)

    Article  ADS  Google Scholar 

  3. P. Bhattacharyya, C. K. Ghosh, Nova, Luminescence and Catalytic Properties of ZnO and Its Heterostructure: Effect of Morphology and Defects. (Nova, India, 2020), p 109 (2020)

  4. S. Das, C.K. Ghosh, R. Dey, M. Pal, RSC Adv. 6, 236 (2015)

    Article  ADS  Google Scholar 

  5. M. Avinor, G. Meijer, J. Phys. Chem. Solids 12, 211 (1960)

    Article  ADS  Google Scholar 

  6. R.P. Rao, J. Mater. Sci. 21, 3357 (1986)

    Article  ADS  Google Scholar 

  7. S. Larach, W.H. Mccarroll, R.E. Shrader, J. Phys. Chem. 60(5), 604 (1956)

    Article  Google Scholar 

  8. N. Hirosaki, R.J. Xie, K. Inoue, T. Sekiguchi, B. Dierre, K. Tamura, Appl. Phys. Lett. 91, 061101 (2007)

    Article  ADS  Google Scholar 

  9. H. Kamikubo, Nec Corporation 5128063A (1992).

  10. Y. Dai, Y. Zhang, Q.K. Li, C.W. Nan, Chem. Phys. Lett. 358, 83 (2002)

    Article  ADS  Google Scholar 

  11. Ü. Özgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doǧan, V. Avrutin, S.J. Cho, H. Morko̧, J Appl Phys 98, 041–301 (2005)

    Article  Google Scholar 

  12. C.K. Subash, U. Valiyaneerilakkal, K. Singh, S. Varghese, J. Appl. Phys. 118, 204102 (2015)

    Article  ADS  Google Scholar 

  13. O. Lupan, T. Pauporté, T. Le Bahers, B. Viana, I. Ciofini, Adv. Funct. Mater. 21, 3564 (2011)

    Article  Google Scholar 

  14. M. Abdullah, T. Morimoto, K. Okuyama, Adv. Funct. Mater. 13, 800 (2003)

    Article  Google Scholar 

  15. S. Fujihara, Y. Ogawa, A. Kasai, Chem. Mater. 16, 2965 (2004)

    Article  Google Scholar 

  16. K.S. Dalal, Y.A. Tayade, Y.B. Wagh, D.R. Trivedi, D.S. Dalal, B.L. Chaudhari, RSC Adv. 6, 14868 (2016)

    Article  ADS  Google Scholar 

  17. S. Das, U.K. Ghorai, R. Dey, C.K. Ghosh, M. Pal, Phys. Chem. Chem. Phys. 19, 22995 (2017)

    Article  Google Scholar 

  18. S. Banerjee, P. Bhattacharyya, C.K. Ghosh, Appl. Phys. A Mater. Sci. Process. 123, 640 (2017)

    Article  ADS  Google Scholar 

  19. P. Bhattacharyya, S. Bhattacharjee, M. Bar, U.K. Ghorai, M. Pal, S. Baitalik, C.K. Ghosh, Appl. Phys. A Mater. Sci. Process. 124, 782 (2018)

    Article  ADS  Google Scholar 

  20. W. Yang, B. Zhang, Q. Zhang, L. Wang, B. Song, Y. Ding, C.P. Wong, RSC Adv. 7, 11345 (2017)

    Article  ADS  Google Scholar 

  21. L.K. Jangir, Y. Kumari, A. Kumar, M. Kumar, K. Awasthi, Mater. Chem. Front. 1, 1413 (2017)

    Article  Google Scholar 

  22. M. Soltani, M. Certier, R. Evrard, E. Kartheuser, J. Appl. Phys. 78, 5626 (1995)

    Article  ADS  Google Scholar 

  23. S. Chen, Y. Liu, Z. Liu, R. Cai, Y. Lu, X. Huang, Z. She, RSC Adv. 6, 26412 (2016)

    Article  ADS  Google Scholar 

  24. E.A. Junior, F.X. Nobre, Gd.S. Sousa, L.S. Cavalcante, Md.M.C. Santos, F.L. Souza, J.MEd. Matos, RSC Adv 7, 24263–24281 (2017)

    Article  ADS  Google Scholar 

  25. R. Shi, P. Yang, J. Wang, A. Zhang, Y. Zhu, Y. Cao, Q. Ma, CrystEngComm 14, 5996–6003 (2012)

    Article  Google Scholar 

  26. R. Krishnapriya, S. Praneeta, A.V. Murugan, New J. Chem. 40, 5080–5089 (2016)

    Article  Google Scholar 

  27. F. Kayaci, S. Vempati, I. Donmez, N. Biyikli, T. Uyar, Nanoscale 6, 10224–10234 (2014)

    Article  ADS  Google Scholar 

  28. D. Liu, Y. Lv, M. Zhang, Y. Zhu, R. Zong, Y. Zhu, J. Mater. Chem. A 2, 15377–15388 (2014)

    Article  Google Scholar 

  29. Q. Hu, G. Tong, W. Wu, F. Liu, H. Qian, D. Hong, CryastEngComm 15, 1314–1323 (2013)

    Article  Google Scholar 

  30. J.E. Eixenberger, C.B. Anders, K. Wada, K.M. Reddy, R.J. Brown, J.M. Ramirez, A.E. Weltner, C. Karthik, D.A. Tenne, D. Fologea, D.G. Wingett, ACS Appl. Mater. Interfaces 11, 24933–24944 (2019)

    Article  Google Scholar 

  31. R.F. Wu, Z.W. Chen, G. Liu, Z.N. Zhang, Z. Jiao, CrystEngComm 14, 1775–1782 (2012)

    Article  Google Scholar 

  32. P.P. Das, S. Samanta, L. Wang, J. Kim, T. Vogt, P.S. Devi, Y. Lee, RSC Adv. 9, 4303–4313 (2019)

    Article  ADS  Google Scholar 

  33. K.J. Kim, P.B. Kreider, C. Choi, C.H. Chang, H.G. Ahn, RSC Adv. 3, 12702–12710 (2013)

    Article  ADS  Google Scholar 

  34. F.A. Taher, E. Abdeltwab, CrystEngComm 20, 5844–5856 (2018)

    Article  Google Scholar 

  35. A. Umar, M.S. Akhtar, M.S. Al-Assiri, A. Al-Hajry, H. Algarni, VRd. Mendonca, Y. Masuda, S.H. Kim, Q.I. Rahman, New J Chem 39, 7961–7970 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (JR) wants to thank DST, India, for financial support during execution of this work in her M.Tech thesis, while other author (NH) wants to acknowledge UGC, India, for awarding her JRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Kumar Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raha, J., Haldar, N. & Ghosh, C.K. Intense orange emission from hydrothermally synthesized ZnO flower-like structure: effect of charge carrier—LO phonon interaction on emission characteristics. Appl. Phys. A 127, 163 (2021). https://doi.org/10.1007/s00339-021-04281-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04281-7

Keywords

Navigation