Skip to main content
Log in

Simple thermal decomposition synthesis of monoclinic VO2

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Pure monoclinic P21/c VO2 thermochromic ceramics are fabricated based on an accessible and simple method using thermal decomposition synthesis in an organic medium. Well-developed submicron crystals with different morphologies are obtained when calcination temperature is varied from 500 to 700 °C. XRD shows that calcination temperature is necessary to form the monoclinic thermochromic phase and to attain high crystallinity. A pure monoclinic VO2 phase is obtained with our methodology and contrasting with other methods in which mixed vanadium oxide phases appear. Thermodiffraction analysis reveals the structural reversibility of the monoclinic-rutile-monoclinic structure during the phase transition. Additionally, DSC analysis shows the hysteretic thermochromic transition between 60 and 70 °C. Measurements of the optical properties through diffuse reflectance in the visible, and near-infrared ranges and performed as a function of the temperature, exhibit a metal–insulator phase transition in agreement with DSC analysis and thermodiffraction. Our results show that thermal decomposition can be a successful methodology for synthesizing monoclinic VO2 with high quality, purity, and reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. Kiria, G. Hyett, R. Binionsa, Adv. Mater. Lett. 1, 86 (2010)

    Article  Google Scholar 

  2. C. Wan, Z. Zhang, D. Woolf, C.M. Hessel, J. Rensberg, J.M. Hensley, Y. Xiao, A. Shahsafi, J. Salman, S. Richter, Y. Sun, M.M. Qazilbash, R. Schmidt-Grund, C. Ronning, S. Ramanathan, M.A. Kats, Ann. Phys. 531, 1 (2019)

    Article  Google Scholar 

  3. A. Pergament, G. Stefanovich, A. Velichko, J. Sel. Top. Nano Electron. Comput. 1, 24 (2013)

    Article  Google Scholar 

  4. C.L. Gomez-Heredia, J.A. Ramirez-Rincon, D. Bhardwaj, P. Rajasekar, I.J. Tadeo, J.L. Cervantes-Lopez, J. Ordonez-Miranda, O. Ares, A.M. Umarji, J. Drevillon, K. Joulain, Y. Ezzahri, J.J. Alvarado-Gil, Sci. Rep. 9, 1 (2019)

    Article  Google Scholar 

  5. C.L. Gomez-Heredia, J.A. Ramirez-Rincon, J. Ordonez-Miranda, O. Ares, J.J. Alvarado-Gil, C. Champeaux, F. Dumas-Bouchiat, Y. Ezzahri, K. Joulain, Sci. Rep. 8, 1 (2018)

    Article  Google Scholar 

  6. R. Zhang, Q.S. Fu, C.Y. Yin, C.L. Li, X.H. Chen, G.Y. Qian, C.L. Lu, S.L. Yuan, X.J. Zhao, H.Z. Tao, Sci. Rep. 8, 1 (2018)

    ADS  Google Scholar 

  7. S. Westman, I. Lindqvist, B. Sparrman, G.B. Nielsen, H. Nord, A. Jart, Acta Chem. Scand. 15, 217 (1961)

    Article  Google Scholar 

  8. F.J. Morin, Phys. Rev. Lett. 3, 34 (1959)

    Article  ADS  Google Scholar 

  9. C. Wu, F. Feng, Y. Xie, Chem. Soc. Rev. 42, 5157 (2013)

    Article  Google Scholar 

  10. F. Guinneton, L. Sauques, J.C. Valmalette, F. Cros, J.R. Gavarri, J. Phys. Chem. Solids 66, 63 (2005)

    Article  ADS  Google Scholar 

  11. I.Y. Forero-Sandoval, J.A. Chan-Espinoza, J. Ordonez-Miranda, J.J. Alvarado-Gil, F. Dumas-Bouchiat, C. Champeaux, K. Joulain, Y. Ezzahri, J. Drevillon, C.L. Gomez-Heredia, J.A. Ramirez-Rincon, Phys. Rev. Appl. 14, 1 (2020)

    Article  Google Scholar 

  12. Z. Shao, X. Cao, H. Luo, P. Jin, NPG Asia Mater. 10, 581 (2018)

    Article  Google Scholar 

  13. K. Liu, S. Lee, S. Yang, O. Delaire, J. Wu, Mater. Today 21, 875 (2018)

    Article  Google Scholar 

  14. J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai, X. Liu, Sci. Rep. 3, 1 (2013)

    Google Scholar 

  15. T. Driscoll, S. Palit, M.M. Qazilbash, M. Brehm, F. Keilmann, B.G. Chae, S.J. Yun, H.T. Kim, S.Y. Cho, N.M. Jokerst, D.R. Smith, D.N. Basov, Appl. Phys. Lett. 93, 024101 (2008)

    Article  ADS  Google Scholar 

  16. J. Ni, W. Jiang, K. Yu, Y. Gao, Z. Zhu, Electrochim. Acta 56, 2122 (2011)

    Article  Google Scholar 

  17. Y. Zhou, X. Chen, C. Ko, Z. Yang, C. Mouli, S. Ramanathan, IEEE Electron Device Lett. 34, 220 (2013)

    Article  ADS  Google Scholar 

  18. H. Lim, N. Stavrias, B.C. Johnson, R.E. Marvel, R.F. Haglund, J.C. McCallum, J. Appl. Phys. 115, 093107 (2014)

    Article  ADS  Google Scholar 

  19. H. Ji, D. Liu, H. Cheng, C. Zhang, L. Yang, D. Ren, RSC Adv. 7, 5189 (2017)

    Article  ADS  Google Scholar 

  20. J.C. Valmalette, J.R. Gavarri, Sol. Energy Mater. Sol. Cells 33, 135 (1994)

    Article  Google Scholar 

  21. J.C. Valmalette, J.R. Gavarri, Mater. Sci. Eng. B 54(B54), 168 (1998)

    Article  Google Scholar 

  22. Barker Jr., H.W. Verleur, H. Guggenheim, Phys. Rev. Lett. 17(26), 1286 (1966)

    Article  ADS  Google Scholar 

  23. N. Bahlawane, D. Lenoble, Chem. Vap. Depos. 20, 299 (2014)

    Article  Google Scholar 

  24. A.M. Makarevich, I.I. Sadykov, D.I. Sharovarov, V.A. Amelichev, A.A. Adamenkov, D.M. Tsymbarenko, A.V. Plokhih, M.N. Esaulkov, P.M. Solyankin, A.R. Kaul, J. Mater. Chem. C 3, 9197 (2015)

    Article  Google Scholar 

  25. F. Guinneton, L. Sauques, J.C. Valmalette, F. Cros, J.R. Gavarri, J. Phys. Chem. Solids 62, 1229 (2001)

    Article  ADS  Google Scholar 

  26. Z. Peng, W. Jiang, H. Liu, J. Phys. Chem. C 111, 1119 (2007)

    Article  Google Scholar 

  27. Z. Cao, X. Xiao, X. Lu, Y. Zhan, H. Cheng, G. Xu, Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  28. G.P. Nagabhushana, G.T. Chandrappa, J. Mater. Chem. A 1, 11539 (2013)

    Article  Google Scholar 

  29. N.M. Aguilar, F. Arteaga-Cardona, J.O. Estévez, N.R. Silva-González, J.C. Benítez-Serrano, U. Salazar-Kuri, J. Environ. Chem. Eng. 6, 6275 (2018)

    Article  Google Scholar 

  30. P. Phoempoon and L. Sikong, Sci. World J. (2014). https://doi.org/10.1155/2014/841418

  31. F. Arteaga-Cardona, E. Santillán-Urquiza, U. Pal, M.E. Méndoza-Álvarez, C. Torres-Duarte, G.N. Cherr, P. de la Presa, M. Méndez-Rojas, J. Magn. Magn. Mater. 441, 417 (2017)

    Article  ADS  Google Scholar 

  32. W. Glasgow, B. Fellows, B. Qi, T. Darroudi, C. Kitchens, L. Ye, T.M. Crawford, O.T. Mefford, Particuology 26, 47 (2016)

    Article  Google Scholar 

  33. F.F. Jia, G.L. Li, C.B. Mou, H.L. Cong, B. Yu, Integr. Ferroelectr. 189, 121 (2018)

    Article  Google Scholar 

  34. S. Gul, S.B. Khan, I.U. Rehman, M.A. Khan, M.I. Khan, Front. Mater. 6, 1 (2019)

    Article  ADS  Google Scholar 

  35. G. Cotin, C. Kiefer, F. Perton, D. Ihiawakrim, C. Blanco-Andujar, S. Moldovan, C. Lefevre, O. Ersen, B. Pichon, D. Mertz, S. Bégin-Colin, Nanomaterials 8, 1 (2018)

    Article  Google Scholar 

  36. C. Zhang, J. Cheng, J. Zhang, X. Yang, Int. J. Electrochem. Sci. 10, 6014 (2015)

    Google Scholar 

  37. Y. Dang, M. Peng, X. Zhang, B. Shao, J. Liu, Inorg. Nano-Metal Chem. 47, 1718 (2017)

    Article  Google Scholar 

  38. D. Lee, B. Chung, Y. Shi, G.Y. Kim, N. Campbell, F. Xue, K. Song, S.Y. Choi, J.P. Podkaminer, T.H. Kim, P.J. Ryan, J.W. Kim, T.R. Paudel, J.H. Kang, J.W. Spinuzzi, D.A. Tenne, E.Y. Tsymbal, M.S. Rzchowski, L.Q. Chen, J. Lee, C.B. Eom, Science 362, 1037 (2018)

    Article  ADS  Google Scholar 

  39. M.F. Jager, C. Ott, P.M. Kraus, C.J. Kaplan, W. Pouse, R.E. Marvel, R.F. Haglund, D.M. Neumark, S.R. Leone, Proc. Natl. Acad. Sci. U. S. A. 114, 9558 (2017)

    Article  ADS  Google Scholar 

  40. C. Zhao, S. Ma, Z. Li, W. Li, J. Li, Q. Hou, Y. Xing, Commun. Mater. 1, 1 (2020)

    Article  Google Scholar 

  41. S. Kumar, D. Lenoble, F. Maury, N. Bahlawane, Phys. Status Solidi Appl. Mater. Sci. 212, 1582 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the CONACYT project A1-S-10011 and CONACYT (INFR-2011-1-163163). A.P.F-B, F. C-A and J.J. A-G wish to acknowledge the support of SRE-AMEXCID-2016-1-278320 and Cinvestav Scientific Research and Technological Development Fund No. 98. Authors are grateful to José Bante Guerra for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Cervantes-Alvarez or U. Salazar-Kuri.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arteaga-Cardona, F., Franco-Bacca, A.P., Cervantes-Alvarez, F. et al. Simple thermal decomposition synthesis of monoclinic VO2. Appl. Phys. A 127, 159 (2021). https://doi.org/10.1007/s00339-021-04309-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04309-y

Keywords

Navigation