Skip to main content
Log in

Degradation of MB and RhB by modified ZrO2 nanoparticles via sunlight

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, CuO–ZrO2 nanoparticles (ZrO2 modified by copper(II)oxide) were prepared by using the impregnation method. The physicochemical properties of produced nanoparticles were characterized using differential reflectance spectra, X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The occurrence of copper(II) was confirmed by XPS technique. The calculated average crystallite size was determined by TEM spectroscopy. The DRS studies exhibited a reduction in the band gap of ZrO2 from 4.7 to 2.9 eV after modification with copper(II) oxide. The photocatalytic method with sunlight was used to examine the ability of copper(II) oxide-modified zirconium(IV) oxide nanoparticles in removing toxic chemicals such as rhodamine B (RhB) and methylene blue (MB). Based on the analysis of experiments, copper(II)oxide-modified ZrO2 showed a good photocatalytic activity, such that 1 mg of the photocatalyst degraded 10 ppm of MB and RhB within 30 and 60 min, respectively. The degradation of MB and RhB dyes was tested four and three times, respectively, to ensure reusability of photocatalyst.

Graphic abstract

Copper(II)oxide-modified zirconium(IV) oxide nanoparticles were examined in regard to their ability in removing toxic chemicals such as rhodamine B (RhB) and methylene blue (MB) through the use of the photocatalytic method. Based on the analysis of experiments, copper(II)oxide-modified ZrO2 showed a good photocatalytic activity, such that 1 mg of the photocatalyst degraded 10 ppm dye within 30 and 60 min for MB and RhB, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.V. Reddy, I.N. Reddy, B. Akkinepally, V.V. Harish, K.R. Reddy, S. Jaesool, Ceram. Int. 45(12), 15298–306 (2019)

    Article  Google Scholar 

  2. K. Murugesan, A. Dhamija, I.H. Nam, Y.M. Kim, Y.S. Chang, Dyes Pigments. 75, 176 (2007)

    Article  Google Scholar 

  3. N. Willmott, J. Guthrie, G. Nelson, J. Soc. Dyers Colour 114, 38 (1998)

    Article  Google Scholar 

  4. S. Jian, S. Sun, Y. Zeng, Z. Liu, Y. Liu, Q. Yang, G. Ma, Appl. Surf. Sci. 505, 144318 (2020)

    Article  Google Scholar 

  5. H. Liu, W. Guo, Y. Li, S. He, C. He, J. Environ. Chem. Eng. 6(1), 59–67 (2018)

    Article  Google Scholar 

  6. D. P. Loucks, E. van Beek. Water Resource Systems Planning and Management (Springer, 2017), pp. 1–49

  7. K. Siwińska-Ciesielczyk, D. Świgoń, P. Rychtowski, D. Moszyński, A. Zgoła-Grześkowiak, T. Jesionowski, Coll. Surf, A: Physicochem. Eng. Asp. 586, 124272 (2020)

    Article  Google Scholar 

  8. A.H. Kianfar, M.A. Arayesh, J. Environ. Chem. Eng. 26, 103640 (2019)

    Google Scholar 

  9. G. Crini, E. Lichtfouse, Environ. Chem. Lett. 17(1), 145–55 (2019)

    Article  Google Scholar 

  10. N. Doufar, M. Benamira, H. Lahmar, M. Trari, I. Avramova, M.T. Caldes, J. Photochem. Photobiol. A: Chem. 26, 112105 (2019)

    Google Scholar 

  11. K. Ghorai, A. Panda, M. Bhattacharjee, D. Mandal, A. Hossain, P. Bera, M.M. Seikh, A. Gayen, Appl. Surf. Sci. 8, 147604 (2020)

    Google Scholar 

  12. H. Li, Z. Wang, Y. Lu, S. Liu, X. Chen, G. Wei, G. Ye, J. Chen, Appl. Surf. Sci. 531, 147307 (2020)

    Article  Google Scholar 

  13. P.K. Robertson, J. Clean. Product. 4, 203–12 (1996)

    Article  Google Scholar 

  14. S. Das, V.C. Srivastava, Photochem. Photobiol. Sci. 15(6), 714–730 (2016)

    Article  Google Scholar 

  15. L. Dashairya, M. Sharma, S. Basu, P. Saha, J. Alloy. Compd. 25(735), 234–245 (2018)

    Article  Google Scholar 

  16. S. Polisetti, P.A. Deshpande, G. Madras, Ind. Eng. Chem. Res 50(23), 12915–12924 (2011)

    Article  Google Scholar 

  17. N.J. Rahman, A. Ramli, K. Jumbri, Y. Uemura, Sci. Reports. 9(1), 1–2 (2019)

    Google Scholar 

  18. S. Li, J. He, Y. Dan, X. Li, Y. Jiao, J. Deng, J. Wang, Y. Chen, L. Jiang, Mater. Chem.Phys. 15(240), 122150 (2020)

    Article  Google Scholar 

  19. V.C. Ho, S. Jeong, T. Yim, J. Mun, J. Power Sour. 29(450), 227625 (2020)

    Article  Google Scholar 

  20. K.L. He Zheng, H. Cao, X. Zhang, J. Phys. Chem. C 113, 18259–18263 (2009)

    Article  Google Scholar 

  21. V. Melchor-Lagar, E. Ramos-Ramírez, A.A. Morales-Pérez, I. Rangel-Vázquez, G. Del Angel, J. Photochem. Photobiol. A: Chem. 5(389), 112251 (2020)

    Article  Google Scholar 

  22. L. Renuka, K.S. Anantharaju, Y.S. Vidya, H.P. Nagaswarupa, S.C. Prashantha, S.C. Sharma, H. Nagabhushana, G.P. Darshan, Appl. Catal. B 5(210), 97–115 (2017)

    Article  Google Scholar 

  23. R. Gopal, A. Sambandam, T. Kuppulingam, S. Meenakshisundaram, M.S. AlSalhi, S. Devanesan, J. Mater. Sci.: Mater. Electron. 1, 1–5 (2020)

    Google Scholar 

  24. R. Zhang, Y. Ma, W. Lan, D.E. Sameen, S. Ahmed, J. Dai, W. Qin, S. Li, Y. Liu, Ultrason. Sonochem. 10, 105343 (2020)

    Google Scholar 

  25. Y. Bessekhouad, D. Robert, J.V. Weber, N. Chaoui, J. Photochem. Photobiol. A 167(1), 49–57 (2004)

    Article  Google Scholar 

  26. X. Zhang, S. Wei, X. Zhao, Z. Chen, H. Wu, P. Rong, Y. Sun, Y. Li, H. Yu, D. Wang, Appl. Catal. A: General. 25(590), 117313 (2020)

    Article  Google Scholar 

  27. Z. He, M. Li, Y. Li, C. Li, Z. Yi, J. Zhu, L. Dai, W. Meng, H. Zhou, L. Wang, Electrochim. Acta 20(309), 166–176 (2019)

    Article  Google Scholar 

  28. B. Li, Zhang W. J. Alloy. Compd. 26, 153158 (2019)

    Google Scholar 

  29. C. Liu, X. Li, L. Zhang, X. Yuan, Y. Wu, X. Wang. J. Mater. Sci.: Mater. Electron 31(17), 14221–14232 (2020)

    Google Scholar 

  30. C.V. Reddy, I.N. Reddy, K. Ravindranadh, K.R. Reddy, D. Kim, J. Shim, Sep. Purif. Technol. 17, 117352 (2020)

    Article  Google Scholar 

  31. J. Abdi, M. Yahyanezhad, S. Sakhaie, M. Vossoughi, I. Alemzadeh, J. Environ. Chem. Eng. 7(3), 103096 (2019)

    Article  Google Scholar 

  32. F. Vahedi Gerdeh, A. Feizbakhsh, E. Konoz, H. Faraji, Int. J. Environ. Anal. Chem. 16, 1–5 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Hossein Kianfar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kianfar, A.H., Arayesh, M.A. & Momeni, M.M. Degradation of MB and RhB by modified ZrO2 nanoparticles via sunlight. Appl. Phys. A 127, 158 (2021). https://doi.org/10.1007/s00339-020-04257-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04257-z

Keywords

Navigation