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Returns in financial assets display consistent excess kurtosis and skewness, implying the presence of 
large fluctuations not forecasted by Gaussian models. This paper applies a resampling method based 
on the bootstrap and a bias-correction step to improve Value-at-Risk (VaR) forecasting ability of the 
n-EGARCH (normal EGARCH) model and correct the VaR for both long and short positions. Our aim is 
to utilize the advantages of this model, but still use the bootstrap resampling method to accurate for 
the tendency of the model tomiscalculate the VaR. Empirical results indicate that the bias-correction 
method can improve the n-GARCH and n-EGARCH VaR forecasts so much that the acquired VaR pre-
dictions are different from the proposed probability. Additionally, allowing asymmetry in the condi-
tional variance using the EGARCH model with normal distribution instead of GARCH improves the 
performance of the bias-correction method in forecasting the VaR for almost all considered indices. 
Moreover, the bias-corrected n-EGARCH model performs better than the simple t-EGARCH model. 
Thus, it seems that this model can take account of both the asymmetry in the conditional variance 
and leptokurtosis in returns distribution. However, we find that the superiority of the bias-corrected 
n-EGARCH model over the t-EGARCH model is not completely confirmed for short positions based on 
the censored likelihood scoring rule.

1. Introduction
Since the Basle Committee (1995; 1996) began allow-
ing banks to implement internal VaR models for cal-
culating capital requirements, various methods have 
been proposed to achieve this purpose. However, the 
theoretical and computational complexity of these 
methods has also been raised. Furthermore, various 
methods have been suggested for modeling condition-
al variance, and a large number of candidate distribu-
tions have been considered for modeling empirical 

features of the returns (Alexander, 2001; Bao, Lee, & 
Saltoğlu, 2007). Although more complex shapes of the 
tails have the potential preference of increased abilities 
to describe the VaR, they may lead to more uncertainty 
in the parameters and hence in the VaR estimate itself 
(Bams, Lehnert, & Wolff, 2005).

The simple method that can consider two charac-
teristics of financial asset returns, namely time-varying 
volatility and excess kurtosis, is the GARCH model by 
Engle (1982) and Bollerslev (1986). Researchers begin-
ning with Black (1976) have demonstrated that stock 
returns are negatively correlated with changes in re-
turn volatility. Nevertheless, symmetric models such 
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as the GARCH model have difficulties in correctly 
modeling the tails of the returns distribution (Giot & 
Laurent, 2003) due to leverage effects. To overcome 
this shortcoming, various studies have proposed the 
inclusion different asymmetric terms in the condition-
al variance equation (Ding, Granger, & Engle, 1993; 
Engle & Ng, 1993; Glosten, Jagannathan, & Runkle, 
1993). Nelson (1991) also proposed the exponential 
GARCH model, which was re-expressed by Bollerslev 
and Mikkelsen (1996).

Hartz‚ Mittnik and Paolella (2006) have developed 
a resampling method based on the bootstrap and bi-
as-correction for improving the VaR forecasting abil-
ity of the n-GARCH (normal GARCH) model. Their 
proposed method has improved the VaR forecasts of 
the n-GARCH model. Our main objective is to extend 
their study by allowing asymmetry in conditional vari-
ance. To this end, we apply the n-EGARCH in addition 
to the n-GARCH model to consider certain theoretical 
advantages of this model over the n-GARCH. How-
ever, Fama (1965) has demonstrated that return distri-
butions of financial instruments are more leptokurtic 
than normal distributions and tend to be exhibit “fat 
tails”. In addition, empirical studies of high-frequency 
financial time series demonstrate that the tail behavior 
of GARCH models remains too short even with stan-
dardized Student’s t innovations (Tsay, 2005). There-
fore, we implement the bias-correction procedure 
based on the bootstrap method to remove the deficien-
cies of the n-GARCH and n-EGARCH models with re-
spect to appropriate VaR forecasts. We try to conserve 
the simplicity of these methods, but still use the boot-
strap resampling method to accurate for the tendency 
of these models to miscalculate the VaR. While Hartz 
et al. (2006), model the long VaR only, we try to extend 
their analysis by correcting the VaR for both long and 
short positions based on the aforementioned GARCH 
models (n-GARCH and n-EGARCH). Additionally, 
we evaluate models based on the censored likelihood 
(csl) scoring rule proposed by Diks, Panchenko, and 
Van Dijk (2011) in addition to the well-known Christ-
offersen’s LR test. Empirical validation shows that con-
sidering asymmetry in conditional variance generally 
leads to improvements in accurately forecasting one-
day-ahead VaR based on the bias-correction method 
for long and short positions, which is somewhat con-
firmed by the csl scoring rule.

The rest of the paper is organized as follows. Sec-
tion 2 explains the methodology for estimating the 
distribution of the VaR point forecast and how it can 
be used to improve its accuracy. The empirical analysis 
and evaluation the performance of competing models 
in forecasting VaR are presented in Section 3. Finally, 
Section 4 concludes the paper.

2. Forecasting VaR
In general, for the set of equally spaced asset returns,  

tr , t = 1, . . . , T , the class of ARMA(p, q)–EGARCH 
(r, s) models is given by

0
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where jd  represents the magnitude effect that indi-
cates how much volatility increases autonomously of 
the direction of the shock. The jθ  is the sign effect. 
Both tz  and t tz E z−  are zero-mean iid sequences 
with continuous distributions. tE z  depends on 
the assumption made on the unconditional density 
of tz . For the standard Gaussian random variable 
t, 2 /tE z π= . The log of the conditional variance 
guarantees that forecasts of the conditional variance 
are non-negative (Nelson, 1991). Some additional 
properties of the EGARCH model can be found in 
Nelson (1991).

For a given return series and a chosen mod-
el from the n-ARMA-EGARCH class in (1) and 
(2), the usual conditional VaR forecast is acquired 
by estimating the unknown parameter vector 

0 1 0 1 1( , , , , , , , , , , , , ,  , )p q r s sa a b b c c d dθ θ θ= … … … … …  via 
conditional maximum likelihood. 

We also define the set of estimated standardized re-
siduals {ˆ }tz , as ˆ/ˆˆt t tz ε σ= , with
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then the h-step-ahead (time horizon, h∈ ) VaR fore-
cast is obtained by

( ) 1 2, ( ; , ),                                                              (ˆ ˆ ˆ ˆ 5)T h T hv v h Tλ λ λ µ σ−
+ += = Φ  (5)
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where 1 2Φ ( ; , )λ µ σ− , indicates the inverse cdf of the 
standard normal distribution with mean  µ  variance 

2σ  and λ , a given probability level, and

0
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The VaR for a short position is similarly computed 
where the same definition is used for the right tail of 
the distribution function, i.e., 1 λ−  substitutes for λ .

2.1. VaR forecast distribution
For implementing the bias-correction method we need 
to estimate VaR forecast distribution in addition to a 
VaR point estimator ( ˆ )vλ . Therefore, as Hartz et al. 
(2006) proposed, we apply the bootstrap method to 
this end. This method coincides with that described 
in Pascual, Romo and Ruiz (2006), Reeves (2005) and 
Trucíos and Hotta (2016). It is connected to the filtered 
historical simulation method proposed by Barone-
Adesi, Giannopoulos and Vosper (1999; 2002) and the 
bootstrap methodology described by Dowd (2005).

Despite that the sampling distribution of the VaR 
point forecast is unknown and intangible, the boot-
strap method provides the possibility for its approxi-
mation. Because, assuming the true data generating 
process is constant over time, the bias caused by the 
use of the inappropriate but simple n-GARCH model 
will display certain regularities and thus can be cor-
rected based on a set of past VaR bootstrap distribu-
tions (Hartz et al., 2006). This is the assumption used 
in the bias-correction method described in Section 2.2.

For implementing B bootstrap iterations, the bth 
replication, b = 1, . . . , B, we should consider the fol-
lowing steps as Hartz et al. (2006) suggested:

Step 0: For a chosen set of values p, q, r, s (for which 
p = r = s = 1 and q = 0 is most common), obtain QML 
parameter vector estimate θ̂ , estimated standardized 
residuals {ˆ }tz , then forecast VaR for a certain h (we 
consider h=1) by (5).

Step 1: Simulate the ( 'b )th of B, n-ARMA(p, q)-
EGARCH(r, s) time series, 

'( ){ }b
tr , of length T, using 

the estimated parameter vector θ̂  and bootstrapped 
standardized residuals sequence 

'( ){ }ˆ b
tz . To eliminate 

the effect of initial values, we simulate T+   series and 
then discard first   observations ( =T). 

Step 2: Obtain the QML parameter vector estimate 
'( )ˆ bθ  based on n-ARMA(p, q)-EGARCH(r, s) using the 

simulated time series 
'( ){ }b

tr .
Step 3: Estimate a resampled VaR estimate, ( ) ( , )ˆ bv h Tλ ,  

using the original series { }tr , and the bootstrap param-
eter vector estimate 

'( )ˆ bθ , via

( ) ( ) ( )( ) ( )
0

1 1

( ) ( ˆˆ ˆˆ ) ,     1, ˆ  , ,
p q

b b bb b
t t i t i j t j

i j

r a a r b t Tε ε− −
= =

= − − − = …∑ ∑

2( ) ( ) ( ) 2( ) ( ) ( ) ( ) ( )
0

1 1 1

ˆ ˆˆ ˆl ˆ ˆ ˆ ˆn  
r s s

b b b b b b b b
t i t i j t j t j j t j

i j j

c c ln d z E z zσ σ θ− − − −
= = =

 = + + − + ∑ ∑ ∑

2( ) ( ) ( ) 2( ) ( ) ( ) ( ) ( )
0

1 1 1

ˆ ˆˆ ˆl ˆ ˆ ˆ ˆn  
r s s

b b b b b b b b
t i t i j t j t j j t j

i j j

c c ln d z E z zσ σ θ− − − −
= = =

 = + + − + ∑ ∑ ∑

and to calculate bootstrapped VaR forecast 
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are calculated using conditional expectations for un-
observed values.

The primary VaR prediction, ( )0v̂λ , and the B boot-
strapped VaR predictions, ( ) ̂ bvλ , b=1,…, B, can be used 
to construct an empirical distribution function of VaR 
estimation. This function is given by

( ) ( )
( ) ( ),

0
ˆ

1; , , ( , ),                                                     (8) 
1

ˆ ˆ
B

b
ak

b

F a h T v h T
B λλ ψ −∞

=

=
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where (.)ψ  is the indicator function. This function 
could be used to construct a bootstrap confidence 
interval for the VaR; for instance Christoffersen and 
Goncalves (2005) propose to use the bootstrap for con-
structing confidence intervals of a conditional VaR es-
timator. Nieto and Ruiz (2010) suggest a new bootstrap 
procedure to obtain prediction intervals of future VaR 
and Expected Shortfall (ES), as well. We use the boot-
strap method as described in the previous section to 
obtain a more accurate VaR based on n-GARCH mod-
els (n-GARCH and n-EGARCH) as much as possible.
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2.2. Bias-correcting VaR forecasts
The corrective method uses the VaR distributions 
(approximated based on the illustrated bootstrapped 
method) and an objective function, which is described 
by definition of the VaR. The VaR is defined to be the 
worst possible loss from an investment over a target 
horizon and for a given probability level (Crouhy, Ga-
lai, & Mark, 2001). Therefore, the evident criterion to 
construct this function is the observed frequency of 
exceptions, or past realized returns that are less (high-
er) than or equal to the predicted VaR for long (short) 
positions.

For a given probability level λ , the observed fre-
quency of exceptions, denoted f̂ , for a set of succes-
sive VaR predictions for long positions obtained from 
the usual n-GARCH models between times, say, 1τ  and 

2τ , and the equivalent realized returns is given by
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The observed frequency of exceptions for a short posi-
tion is similarly computed where the same definition is 
used for the right tail of the distribution function, i.e., 

( )[ ,ˆ )v tψ +∞  substitutes for ( )( ˆ,v tψ −∞ 
.

The observed frequency of exceptions is less (high-
er) than the real risk level λ , if the VaR forecasts cal-
culated by the n-GARCH models tend to overestimate 
(underestimate) the risk. Therefore, the logic behind 
the bias-correction method is to find the quantile of 
past VaR distributions which causes observed fre-
quency of exceptions conforms to (as close as possible) 
a given risk level. 

Let [ ] ( ){ ,ˆ }
0

b Bv h t bλ =  be the sorted VaR predictions, with 
length (B+1) produced by the resampling algorithm 
with the original n-GARCH models forecast, ( )(0) ,v̂ h tλ ,  
added, i.e., [ ] ( ) [ ] ( )1ˆ ˆ, ,b bv h t v h tλ λ

+≤  for b = 0, . . . , B − 1. 
Calculating the correct quantile of the VaR distribu-
tion ˆk̂

F  is equivalent to find the largest index b for the 
long VaR (the smallest for the short VaR), denoted *b ,  
such that for the conforming series ( )

*

}ˆ{ ,
bv h tλ

 
  2τ

1t τ= ,  
the observed frequency of exceptions is less than or 
equal to the given risk level. Therefore, we need a cer-
tain number of past VaR distribution predictions that 
precede the actual VaR prediction of interest. As Hartz 
et al. (2006) have described, we consider a moving 
window procedure for finding the proper quantile of 
the VaR distribution produced by the resampling al-

gorithm. Common to all models is the construction of 
a moving window in which the model is recalculated 
for each window period, removing the first observa-
tions and adding new ones as the window advances.  
L is the fixed number of preceding VaR forecast distri-
butions that we consider for finding the proper quan-
tile for the h-step-ahead prediction for the downfall 
risk made at time T. Accordingly, the optimal quantile 
is described as

 (10)

where * b  denotes the greatest quantile of the last L 
feasible VaR distributions for which the conforming 
series of VaR predictions, ( ){ }*

ˆ ,bv h tλ

 
  , leads to an ob-

served frequency of VaR exceptions that is equal to 
(or just smaller) than the given risk level. The *b  for 
a short position is similarly computed where it deter-
mines the smallest quantile of the VaR distributions 
and the [ ] ( )( ,ˆ , )bv h t

ψ
∞

 substitutes for [ ] ( )ˆ( , , )bv h t
ψ

−∞
.

As the data generating process is not constant over 
time, calculating an optimal L would be reliable only 
for particular segment of a particular data set (Hartz et 
al., 2006). Thus, following the suggestion of Hartz et al. 
(2006) concerning the choice of L, we assume two sizes 
of the moving window (L) to examine whether this cri-
terion could affect the results of our study. 

We consider two values, L=250 and 500, (one and 
two years of trading data, respectively) to perform the 
bias-correction method.

3. Empirical analysis 
We consider the daily percentage log-return series, 
defined by 1(ln ln )t t tr p p −= − × 100, where tp  is the 
closing price index on day t. The data set analyzed in 
this paper comprises daily observations on three major 
stock market indices’ returns; namely, the FTSE Com-
posite, NIKKEI 225 and CAC (hereafter the FTSE, 
NIKKEI and CAC). The starting date for the series are 
August 27, 1999 for the FTSE; April 09, 1999 for the 
NIKKEI; and November 05, 1999 for the CAC.

The usual descriptive statistics of the data are given 
in Table 1. The moments of the stock index returns are 
shown along with the results of an aggregate autocor-
relation (Ljung-Box) test for returns and their squares. 
As seen, for the FTSE and NIKKEI the skewness is 
significant and negative, indicating a possible leverage 
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effect in data, but for the CAC the skewness is posi-
tive, and the kurtosis is significantly higher than that 
of a Gaussian distribution (excess kurtosis), indicating 
fat-tailed returns for all series. This suggests the need 
for a fat-tailed distribution, for example Student’s t, to 
describe the returns’ conditional distribution. Further-
more, imposing an asymmetric parameter in the con-
ditional variance equation enables us to capture pos-
sible leverage effects in the data. In addition, the large 
Q-statistics up to 12, 24 and 36 orders strongly reject 

the null hypothesis of no serial correlation in both re-
turns and squared returns for the FTSE and CAC but 
only in returns for the NIKKEI index.

The estimation period is set to T = 1000, which cor-
responds to about four years of daily returns data for 
estimating the parameters of models. B = 1000 boot-
strap replications are used for calculating the VaR fore-
cast distributions.

For each series, we use p =2000 out-of-sample val-
ues, and the last forecast is made for July 16, 2013 for 

FTSE NIKKEI CAC

Mean 0.0008 -0.004 -0.007

Minimum -9.26 -12.11 -9.47

Maximum 9.38 13.23 10.59

Std. Dev. 1.276 1.565 1.550

Skewness -0.126 -0.419 0.028

Kurtosis 8.715 9.361 7.540

Ljung-Box test for returns

Q-stat(12) 78.81 13.85 56.95

{0} {0.31} {0}

Q-stat(24) 102.2 44.34 71.28

{0} {0.007} {0}

Q-stat(36) 153.52 61.00 120.97

{0} {0.006} {0}

Ljung-Box test for squared returns

Q-stat(12) 2797 3051 1988

{0} {0} {0}

Q-stat(24) 4340 3860 3138

{0} {0} {0}

Q-stat(36) 5351 4114 3907

{0} {0} {0}

Table 1. Moments of the FTSE, NIKKEI and CAC returns along with aggregate autocorrelation test results.

Note: 
p-values in curly braces.
Q-stat (q) denotes a modified Ljung-Box type statistic.
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each series. The models are used to estimate one-day-
ahead VaR (h=1) of both long and short trading posi-
tions (left and right tails of returns distribution) with 
different probabilities (at different tail quantiles): 0.5%, 
1%, 5%, 95%, 99% and 99.5%.

For implementing the bias-correction method, we 
use the two values L = 250 and 500. So, an additional 
number of L=500 VaR forecast distributions resulting 
in a total of P +L=2500 VaR forecast distributions are 
considered.

In addition to the n-AR(1)-GARCH(1,1) and 
n-AR(1)-EGARCH(1,1) models, we consider the 
AR(1)-EGARCH(1,1) with the Generalized Error Dis-
tribution (GED) and t-AR(1)-EGARCH(1,1) (with 
Student’s t innovations) to assess the performance of 
the bias-correction method.1 The original form of this 
model is used for the comparison due to its ability to 
consider the asymmetry in the conditional variance 
and the excess kurtosis relative to the normal distribu-
tion. In this model, the conditional variance obtained 
is similar to the n-EGARCH model (i.e., Equation (2)), 
while the tE z  for a Student’s t distribution with υ 2>  
degrees of freedom is given by

( ) 2 2Γ(( 1) / 2)
,                                                                             (11)

( 1)
tE z υ υ

υ υ π
− +

=
− Γ( / 2)

 (11)

where Γ( )x  is the usual gamma function.
The corresponding VaR prediction for the t-AR(1)-

EGARCH(1,1) model is given by

( ) ( )1, ; ,                                          ˆˆ ˆ    ˆ ˆ                    (12)T h T h tv v h T Fλ λ µ σ λ υ−
+ += = +  (12)

where ( )1
tF λ;  υ−  is the inverse of the cumulative distri-

bution function of the t-distribution with υ  degrees of 
freedom and a standardized variance of one.

In the remainder of the paper, we first examine the 
VaR forecast distributions generated by the bootstrap 
algorithm. Then, we compare the VaR estimations of 
the competing models.

3.1. VaR forecast distribution
Figures 1–3 present the first VaR forecast distribu-
tions included in our analysis for the FTSE, NIKKEI 
and CAC for both long and short trading positions. 
The upper part of the figures refers to the VaR fore-
cast distribution for the n-GARCH model, while the 
lower part of the figures refers to the VaR forecast 

distribution for the n-EGARCH model. Additionally, 
the vertical lines exhibit the usual n-GARCH and n-
EGARCH VaR predictions, 0v̂ .

As seen from figures 1, 2 and 3, the risk in VaR fore-
casts for both long and short trading positions increas-
es for smaller probability levels. The usual VaR predic-
tions do not exactly coincide with the mode of the VaR 
forecast distributions. For instance, for the first VaR 
forecasts made for all series, the usual n-EGARCH 
VaR forecasts are smaller than the mode of the VaR 
forecast distributions for both long and short trading 
positions. On the other hand, the first VaR forecasts 
for all series from the usual n-GARCH model for short 
trading position are greater than the mode of the cor-
responding VaR forecast distributions. 

3.2. Performance of Models in Forecasting VaR
For assessing the accuracy of competing methods, we 
define the Boolean sequence as

( )( ) ( )1 1, ,ˆ 1  ,                                                t tv tI r
λ

ψ+ +−∞=  (13)

where ( )ˆ 1,v tλ  is one-step-ahead VaR predictions for 
λ , a given probability level, and 1tr +  is the observed 
return. Christoffersen (1998) showed that evaluat-
ing interval forecasts can be reduced to examining 
whether the Boolean sequence, 1{ }T

t tI = , satisfies the un-
conditional coverage (UC) and independence (IND) 
properties. 

Let 1 1
1

T

t
t

T I +
=

=∑ , the number of violations, and the 

failure rate be expressed as 1
1 1

1

/ˆ
T

t
t

f T I T T−
+

=

= =∑ . For 

testing the UC, the proper likelihood ratio statistic, 
also called the Kupiec (1995) LR unconditional test, 
(under the null hypothesis that, ˆ λf = ) is

1 1 1 1 2
12 ln (1 ) ( ) 2 ln (1 ) ( ) ~ ,   ˆ  ˆT T T T T T

ucLR f f λ λ χ− −   = − − −  

( )2
1

1 ,                                                                                       (14)un unP F LR
χ

= −  (14)

For unP  below the desired significance level, the null 
hypothesis is rejected.

The ccLR  test adapted from Christoffersen (1998) is 
used to test the conditional coverage. 

We compare models based on the p-values, and 
models with higher p-values are preferred. 
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Figure 1. Vertical lines refer to the usual n-GARCH and n-EGARCH VaR predictions, 0v̂ . VaR forecast distributions for the 
first forecast - FTSE.
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Figure 2. Vertical lines refer to the usual n-GARCH and n-EGARCH VaR predictions, 0v̂ . VaR forecast distributions for the 
first forecast - NIKKEI.
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In addition to unconditional and conditional tests 
we consider a csl scoring rule suggested by Diks et al. 
(2011) to assess the performance of the bias-correc-
tion method. They have shown that this scoring rule 
is handy as the main interest lies in comparing the ac-
curacy of density forecasts for a specific region, such as 
the left tail in financial risk management. While they 
have considered long VaR only, we also evaluate our 
models for both long and short positions. The cen-
sored likelihood (csl) score function is given by

( ) ( ) ( )( ) ( ) ( )csl
t t 1 t t 1 t t 1 t t 1 t tS a ; r w r loga (r ) 1 w r log(1 w s a s ds),   ˆ        ( 5ˆ 1ˆ )+ + + += + − − ∫

( ) ( ) ( )( ) ( ) ( )csl
t t 1 t t 1 t t 1 t t 1 t tS a ; r w r loga (r ) 1 w r log(1 w s a s ds),   ˆ        ( 5ˆ 1ˆ )+ + + += + − − ∫  (15)

( ) ( )csl csl csl
t 1 t t 1 t t 1d S ˆa ; r S bˆ ; r ,+ + += −

where tâ  and tb̂  are two competing density forecasts and 
( )tw r  is a threshold weight function ( ) α

t tw r I(r v̂ )= ≤ . 
Additionally, corresponding realizations of the variable 

t 1r +  are accessible for    t = n, n+1, . . . , T-1. Then, tâ  
and tb̂  are comparable based on their average scores 

difference d, by testing if their difference is statistically 
significant2.

In the following, we first concentrate on the mea-
sures ccLR , indLR  and ucLR . The results for the seven 
competing models are given in Tables 2–4 for the 
FTSE, NIKKEI and CAC.

We first examine the capability of the bias-correc-
tion procedure to improve the VaR forecasts of the 
usual n-GARCH and n-EGARCH models. Compar-
ing the forecasts from the usual models with the bias-
corrected forecasts, we find that the ucP -values for at 
least five out of the 6 specified probabilities for L = 500 
are superior (larger) to those for the usual n-GARCH 
model, while for the n-EGARCH model the p-values 
for at least four out of the 6 cases for both window 
lengths are superior to those for the usual n-EGARCH 
model.

We found no ucP -values below the 5% significance 
level for the bias-corrected VaR predictions of the n-
EGARCH model with L = 500 for all series except the 
NIKKEI at 99%, while for the usual VaR forecasts, we 

Figure 3. Vertical lines refer to the usual n-GARCH and n-EGARCH VaR predictions, 0v̂ . VaR forecast distributions for the 
first forecast - CAC.
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have at least 2 p-values below the 1% level and one p-
value below the 0.01%. 

The results show that the usual VaR models based 
on normal innovations have difficulties with modeling 
large returns. In particular, the usual normal GARCH 
models consistently underestimate the return (risk) 

for all series for long positions. In other words, fail-
ure numbers are much greater than expected at a given 
quantile in the case of normal innovations. 

Regarding independence of the VaR exceptions over 
time, for both the usual n-GARCH and n-EGARCH 
VaR forecast violations or those from the bias-correc-

VaR 
models

f̂
p-values

f̂
p-values

ccP indP unP ccP indP unP */**/***

VaR 5% VaR 95%

ˆ
Nf 0.0645 0.0133 0.4802 0.0043 0.0420 0.0600 0.0952 0.0918 5/3/3

*
500

ˆ
Nf − 0.0545 0.4343 0.3598 0.3624 0.0495 0.0794 0.0245 0.9182 2/1/0

ÊGARCHf 0.0605 0.1052 0.7070 0.0367 0.0435 0.0803 0.0742 0.1730 4/4/2

*
500ÊGARCHf − 0.0505 0.6627 0.3674 0.9184 0.0520 0.1870 0.0742 0.6834 0/0/0

t̂ EGARCHf − 0.0650 0.0120 0.6866 0.0032 0.0450 0.0951 0.0572 0.2970 5/5/4

VaR 1% VaR 99%

ˆ
Nf 0.0210 <0.0001 0.2852 <0.0001 0.0070 0.3258 0.6456 0.1541

*
500

ˆ
Nf − 0.0145 0.0321 0.0699 0.0581 0.0130 0.3054 0.3990 0.1974

ÊGARCHf 0.0205 0.0001 0.7898 <0.0001 0.0075 0.4440 0.6229 0.2397

*
500ÊGARCHf − 0.0135 0.2235 0.3813 0.1353 0.0120 0.5049 0.4357 0.3835

t̂ EGARCHf − 0.0210 <0.0001 0.8094 <0.0001 0.0050 0.0429 0.7395 0.0129

VaR 0.5% VaR 99.5%

ˆ
Nf 0.0155 <0.0001 0.4905 <0.0001 0.0025 0.2111 0.8623 0.0792

*
500

ˆ
Nf − 0.0095 0.0331 0.5356 0.0112 0.0070 0.4403 0.6456 0.2319

ÊGARCHf 0.0115 0.0015 0.4548 0.0004 0.0020 0.0950 0.8874 0.0304

*
500ÊGARCHf − 0.0060 0.7654 0.6920 0.5388 0.0045 0.9074 0.7636 0.7471

t̂ EGARCHf − 0.0120 0.0006 0.4357 0.0001 0.0010 0.0082 0.9382 0.0020

Table 2. Unconditional coverage, independence, conditional coverage—FTSE.

Note: ˆ
Nf : observed downfall probability for n-AR(1)-GARCH(1,1) model; ÊGARCHf : observed downfall probability for n-AR(1)-

EGARCH(1,1) model; t̂ EGARCHf − : observed downfall probability for t-AR(1)-EGARCH(1,1) model; *
500

ˆ
Nf −  ( *

500ÊGARCHf − ): observed down-
fall probability for calibrated n-AR(1)-GARCH(1,1) (n-AR(1)-EGARCH(1,1)) model with L=500;  unP  ( indP , ccP ): probability of observing 
a sample with higher unconditional coverage test statistic (independence test statistic, conditional coverage test statistic). The results 
for both long and short positions are reported in the left and right panel of the table, respectively. */**/***: Number of p-values for 
unconditional coverage are smaller than 0.10/0.05/0.01.
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tion method, independence cannot be rejected; in oth-
er words, the occurrence of violations for VaR forecasts 
have no systematic pattern.

Considering the conditional coverage test statistic, 
we see that, for all series, the p-values for at least five 
out of the six specified probabilities for L = 500 are su-
perior to those for the usual n-GARCH model, while 
for the n-EGARCH model the p-values for at least four 
out of the six cases for both window lengths are supe-

rior to those for the usual n-EGARCH model. Sum-
marizing the results for the conditional coverage, the 
bias-correction method can improve the n-GARCH 
and n-EGARCH VaR forecasts so much that the VaR 
predictions acquired are different from the proposed 
probability. 

Comparing the unconditional coverage results for 
the bias-correction method based on the n-EGARCH 
model with those based on the n-GARCH model, we 

VaR 
models

f̂
p-values

f̂
p-values

ccP indP unP ccP indP unP */**/***

VaR 5% VaR 95%

ˆ
Nf 0.0605 0.1024 0.6599 0.0367 0.0430 0.2589 0.4619 0.1415 5/5/3

*
500

ˆ
Nf − 0.0540 0.4759 0.3629 0.4175 0.0570 0.2923 0.4874 0.1596 0/0/0

ÊGARCHf 0.0595 0.1415 0.5720 0.0581 0.0550 0.2789 0.2157 0.3123 4/2/2

*
500ÊGARCHf − 0.0555 0.3158 0.3001 0.2671 0.0595 0.0537 0.1329 0.0581 2/1/0

t̂ EGARCHf − 0.0620 0.0552 0.7064 0.0174 0.0555 0.1617 0.1204 0.2671 4/3/1

VaR 1% VaR 99%

ˆ
Nf 0.0160 0.0123 0.1036 0.0131 0.0045 0.0205 0.7636 0.0056

*
500

ˆ
Nf − 0.0125 0.3355 0.3138 0.2794 0.0130 0.3054 0.3990 0.1974

ÊGARCHf 0.0220 <0.0001 0.3342 <0.0001 0.0070 0.3258 0.6456 0.1541

*
500ÊGARCHf − 0.0130 0.2771 0.3413 0.1974 0.0150 0.0242 0.0801 0.0364

t̂ EGARCHf − 0.0180 0.0049 0.6493 0.0012 0.0055 0.0812 0.7156 0.0270

VaR 0.5% VaR 99.5%

ˆ
Nf 0.0100 0.0087 0.1918 0.0053 0.0010 0.0082 0.9382 0.0020

*
500

ˆ
Nf − 0.0060 0.1392 0.0590 0.5388 0.0065 0.6037 0.6686 0.3634

ÊGARCHf 0.0110 0.0023 0.2373 0.0010 0.0025 0.2111 0.8623 0.0792

*
500ÊGARCHf − 0.0050 0.1172 0.0384 1.0000 0.0070 0.4403 0.6456 0.2319

t̂ EGARCHf − 0.0075 0.0866 0.0993 0.1401 0.0025 0.2111 0.8623 0.0792

Table 3. Unconditional coverage, independence, conditional coverage—NIKKEI.

Note: See the legend of Table 2 for explanations.
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conclude that the n-EGARCH model outperforms the 
n-GARCH model as for all but the NIKKEI index: the 
p-values for at least four out of the six specified prob-
abilities are superior to those for the n-GARCH model 
with L = 500. Similar results hold for the conditional 
coverage test statistic for all series. Additionally, the bi-
as-correction method based on the n-EGARCH model 
is the only model never rejected by any of the three 
performance tests of Christoffersen (1998) for all the 

specified probabilities (even at 99.5% and 0.5% tails) 
and considered indices.

Consequently, the bias-correction method based 
on the n-EGARCH model leads to an acceptable per-
formance for out-of-sample VaR prediction. In other 
words, it seems that allowing for an asymmetric re-
sponse of the conditional variance to positive and neg-
ative shocks generally yields improvement in the VaR 
performance of the bias-correction method. Therefore, 

VaR 
models

f̂
p-values

f̂
p-values

ccP indP unP ccP indP unP */**/***

VaR 5% VaR 95%

ˆ
Nf 0.0760 <0.0001 0.5474 <0.0001 0.0400 0.0335 0.1306 0.0338 4/4/3

*
500

ˆ
Nf − 0.0575 0.2389 0.4389 0.1324 0.0520 0.0469 0.0147 0.6834 1/0/0

ÊGARCHf 0.0715 0.0001 0.4849 <0.0001 0.0450 0.0951 0.0572 0.2970 3/3/3

*
500ÊGARCHf − 0.0520 0.4741 0.2495 0.6834 0.0485 0.3093 0.1335 0.7571 0/0/0

t̂ EGARCHf − 0.0750 <0.0001 0.3454 <0.0001 0.0455 0.0981 0.0523 0.3487 3/3/3

VaR 1% VaR 99%

ˆ
Nf 0.0200 0.0001 0.1957 <0.0001 0.0095 0.8045 0.5356 0.8207

*
500

ˆ
Nf − 0.0095 0.8045 0.5356 0.8207 0.0145 0.1067 0.3474 0.0581

ÊGARCHf 0.0215 <0.0001 0.1643 <0.0001 0.0115 0.4289 0.2617 0.5102

*
500ÊGARCHf − 0.0135 0.2235 0.3813 0.1353 0.0120 0.3883 0.2873 0.3835

t̂ EGARCHf − 0.0185 0.0014 0.2313 0.0006 0.0080 0.1875 0.1153 0.3517

VaR 0.5% VaR 99.5%

ˆ
Nf 0.0100 0.0166 0.5148 0.0053 0.0060 0.7654 0.6920 0.5388

*
500

ˆ
Nf − 0.0055 0.8913 0.7156 0.7551 0.0060 0.7654 0.6920 0.5388

ÊGARCHf 0.0145 <0.0001 0.3474 <0.0001 0.0055 0.8913 0.7156 0.7551

*
500ÊGARCHf − 0.0065 0.6037 0.6686 0.3634 0.0050 0.9462 0.7395 1.0000

t̂ EGARCHf − 0.0110 0.0036 0.4744 0.0010 0.0050 0.9462 0.7395 1.0000

Table 4. Unconditional coverage, independence, conditional coverage—CAC.

Note: See the legend of Table 2 for explanations.
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FTSE NIKKEI CAC FTSE NIKKEI CAC

VaR 5% VaR 95%

,  500Nd -0.0507 -0.0401 -0.0720 -0.1252 -0.2692 -0.1791

Test stat. -5.8568 -4.4134 -0.0001 -0.0023 -0.0004 -0.0018

,500EGARCHd -0.0569 -0.0181 -0.0793 -0.0179 -0.1373 -0.0395

Test stat. -6.4187 -4.6009 -0.0001 -4.2077 -0.0002 -0.0002

, 500N EGARCHd − -0.0007 0.0204 -0.0059 -0.0539 -0.0976 -0.1273

Test stat. -8.2003 2.6194 -8.8945 -6.0130 -5.2386 -8.6942

_ ,500EGARCH td -0.0259 0.0283 -0.0540 0.0519 -0.1897 -0.0572

Test stat. -2.3995 1.8529 -6.6502 8.7729 -0.0001 -2.6532

VaR 1% VaR 99%

,  500Nd -0.0478 -0.0268 -0.0521 -0.4432 -0.6463 -0.3534

Test stat. -5.7177 -5.3513 -0.0001 -0.0010 -0.0005 -0.0004

,500EGARCHd -0.0572 -0.0057 -0.0392 -0.2748 -0.5455 -0.1229

Test stat. -3.9568 -3.9915 -0.0001 -0.0007 -0.0002 -0.0002

, 500N EGARCHd − -0.0100 0.0031 0.0270 -0.0688 -0.2125 -0.2187

Test stat. -1.3473 1.5694 7.7423 -2.0162 -2.6433 -4.2149

_ ,500EGARCH td -0.0272 -0.0002 -0.0046 0.4595 -0.1076 0.3828

Test stat. -5.9952 -3.5245 -1.2083 2.7004 -2.0393 5.2561

VaR 0.5% VaR 99.5%

,  500Nd -0.0358 -0.0386 -0.0269 -0.5041 -0.7674 -0.1196

Test stat. -0.0002 -7.3189 -0.0002 -0.0005 -0.0004 -4.7315

,500EGARCHd -0.0446 -0.0066 -0.0457 -0.3150 -0.5415 0.4784

Test stat. -6.0635 -4.0795 -0.0001 -0.0004 -0.0003 0.0001

, 500N EGARCHd − -0.0244 0.0019 0.0079 -0.0574 -0.1053 0.0808

Test stat. -3.4634 1.6062 5.2479 -1.3984 -2.5569 8.9946

_ ,500EGARCH td -0.0249 0.0062 -0.0116 0.7539 0.1648 1.2717

Test stat. -8.1588 1.0638 -2.7084 2.9685 1.3557 5.5332

Table 5. Average score differences and tests of equal predictive accuracy for the censored likelihood (csl).

Note: ,  500 ,500 ( )N EGARCHd d : average score difference based on n-AR(1)-GARCH(1,1) (n-AR(1)-EGARCH(1,1)) model relative to cali-
brated n-AR(1)-GARCH(1,1) (n-AR(1)-EGARCH(1,1)) model with L=500; , 500N EGARCHd − : average score difference for calibrated n-
AR(1)-GARCH(1,1) relative to calibrated n-AR(1)-EGARCH(1,1) model with L=500; _ ,500 EGARCH td : average score difference for t-
AR(1)-EGARCH(1,1) model relative to calibrated n-AR(1)-EGARCH(1,1) model with L=500. Additionally, the corresponding test 
statistics are shown. The results for both long and short positions are reported in the left and right panel of the table, respectively.
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this probably tells us that considering asymmetry in 
conditional variance is crucial in determining a proper 
value of VaR. 

The results slightly prefer the longer window of 
length L = 500, with a higher number of greater  
p-values and a smaller number of significant test statis-
tics. Because the results hold for all series, we can say 
that the method is not openly sensitive to the choice of 
L. However, Hartz et al. (2006) found that the results 
slightly prefer the shorter window of length L = 250.

With respect to the results of the t-EGARCH model 
for the ucLR  test, we see that the t-EGARCH VaR fore-
casts for only one specified probability for the NIKKEI 
index are superior to the bias-corrected n-EGARCH 
VaR forecasts, while they are never better for the FTSE 
and CAC. Similar results hold for the conditional cov-
erage test statistic for all series while the independence 
test statistics indicate no systematic problems. Accord-
ing to empirical results, the bias-correction method 
based on the n-EGARCH model performs better than 
the t-EGARCH model. Therefore, it seems that there is 
no need to consider a fat-tailed distribution to describe 
the returns’ conditional distribution.

Table 5 presents the average score differences d with 
the accompanying tests of equal predictive accuracy for 
models relative to the bias-corrected n-GARCH and 
n-EGARCH models. The score difference d is com-
puted by subtracting the score of the bias-corrected 
n-EGARCH from the score of n-EGARCH, bias-cor-
rected n-GARCH, and t-EGARCH models, such that 
negative values of d indicate better predictive ability of 
the bias-corrected n-EGARCH model. Additionally, the 
score difference d for the n-GARCH and bias-corrected 
n-GARCH models is calculated and interpreted in a 
similar way. For all series, the csl scoring rule suggests 
superior or equal predictive ability of the bias-correc-
tion method in comparison with usual n-GARCH 
models. Comparing the results for the bias-correction 
method based on the n-EGARCH model with those 
based on the n-GARCH model, we conclude that the n-
EGARCH model outperforms the n-GARCH model for 
both the FTSE and NIKKEI indexes (except the NIK-
KEI at 99%), but evidence is weaker when we consider 
the CAC index. On the other hand, the bias-correction 
method based on the n-EGARCH model performs bet-
ter than the t-EGARCH model for the NIKKEI, while 
this is not true for short FTSE and CAC positions.

4. Conclusions
In this paper, we extend the study by Hartz et al. (2006) 
to take account of asymmetry in conditional variance 
and correct the VaR for both long and short positions. 
We focus on three extreme percentiles α = 0.5%, 1% 
and 5% in the empirical study. Our results are robust 
to the chosen bias-correction window length, with 
a slight preference for the longer window length of 
L=500 for the three real return series investigated.

Our findings support those found in the study by 
Hartz et al. (2006). They obtain similar results with the 
other data, finding that the bias-correction method 
based on the n-GARCH model performs better than 
the usual n-GARCH model. This is also confirmed by 
the csl scoring rule for both GARCH models which 
has not been considered by Hartz et al. (2006). Our 
empirical study shows that the bias-correction method 
based on the n-EGARCH model instead of n-GARCH 
leads to improvements in correctly forecasting one-
day-ahead VaR for long and short positions of almost 
all real return series investigated based on the three 
performance tests of Christoffersen (1998), while 
the independence of the VaR violations is unaffected 
by this method. We found that the bias-corrected   
n-EGARCH model is the only model never rejected by 
any of the three performance tests for all the specified 
probabilities and real return series investigated. Over-
all, it seems that allowing for an asymmetric response 
of the conditional variance to positive and negative 
shocks yields an improvement in the VaR performance 
based on the bias-correction method in terms of the 
three performance tests, but the improvement is not 
highly confirmed based on the csl scoring rule.

Moreover, the bias-correction method based on 
the n-EGARCH model performs better than the  
t-EGARCH model based on three performance tests. 
This is also true even for the NIKKEI with the most 
skewness and kurtosis in our data investigated. Thus, 
it seems that the bias-corrected n-EGARCH model 
can take account of both the asymmetry in the con-
ditional variance and leptokurtosis in return distribu-
tion. However, we observe that the superiority of this 
model is not maintained in terms of predictive power 
according to the csl scoring rule for short positions. 
Thus, further research is advisable to adjust the stan-
dard VaR predictions of the n-GARCH models based 
on csl scoring rule rather than the observed frequency 
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of violations. Additionally, future work could extend 
the methodology to other types of GARCH models 
such as the power (G)ARCH models of Brooks, Faff, 
McKenzie and Mitchell (2000) or several GARCH 
models considered by Loudon, Watt and Yadav (2000).
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Endnotes
1 For the sake of brevity, only the results for Student’s 

t distribution are presented in this paper. The results 
for the GED, which are very similar to those for the 
Student’s t distribution, are available from the au-
thors upon request.

2 For a more technical definition of the method, 
please refer to Diks et al. (2011).
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