Skip to main content
Log in

Two-Photon Fluorescence Study of Olive Oils at Different Excitation Wavelengths

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Two-photon fluorescence (TPF) of olive oils is discovered and observed experimentally for the first time. Variations of the single-photon fluorescence (SPF) and TPF with the excitation wavelength are investigated for four different olive oils. The results show that fluorescence of the cosmetic olive oils (COO) is very weak and exhibits only one spectral peak around 490 nm. While for the ordinary edible oils (OEO) whether they are during their shelf life or not, their fluorescence spectra may exhibit multiple peak structures. The short-term natural expiration only slightly weakens TPF of OEO. Moreover, the excitation wavelength affects the OEO spectra considerably in terms of the spectral peak number, the spectral peak position, and spectral shapes. When the excitation wavelength decreases from 700 nm, the whole TPF of the OEO also decreases. Relatively, however, the short wave band will decrease and disappear more quickly. While for the SPF, the long wave band will decrease and disappear first. The optimal excitation wavelengths to make the TPF strongest are around 700 nm and 640 nm for OEOs and COO, respectively. And effects of temperature on SPF and TPF of extra virgin olive oil are also explored. This work may be of significance for its potential applications in TPF detection and two-photon laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All the data and materials from this manuscript will be made available on request.

References

  1. Owen RW, Giacosa A, Hull WE, Haubner R, Würtele G, Spiegelhalder B, Bartsch H (2000) Olive-oil consumption and health: the possible role of antioxidants. Lancet Oncol 1:107–112. https://doi.org/10.1016/s1470-2045(00)00015-2

    Article  CAS  PubMed  Google Scholar 

  2. Paiva-Martins F, Rodrigues V, Calheiros R, Marques MP (2011) Characterization of antioxidant olive oil biophenols by spectroscopic methods. J Sci Food Agric 91:309–314. https://doi.org/10.1002/jsfa.4186

    Article  CAS  PubMed  Google Scholar 

  3. Cicerale S, Lucas L, Keast R (2010) Biological activities of phenolic compounds present in virgin olive oil. Int J Mol Sci 11:458–479. https://doi.org/10.3390/ijms11020458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xiong B, Sumner D, Matthews W (2014) A new market for an old food: the U.S. demand for olive oil. Agric Econ 45:107–118. https://doi.org/10.1111/agec.12133

    Article  Google Scholar 

  5. Vaclavik L, Cajka T, Hrbek V, Hajslova J (2009) Ambient mass spectrometry employing direct analysis in real time (DART) ion source for olive oil quality and authenticity assessment. Anal Chim Acta 645:56–63. https://doi.org/10.1016/j.aca.2009.04.043

    Article  CAS  PubMed  Google Scholar 

  6. Squeo G, Caponio F, Paradiso VM, Summo C, Pasqualone A, Khmelinskii I, Sikorska E (2019) Evaluation of total phenolic content in virgin olive oil using fluorescence excitation-emission spectroscopy coupled with chemometrics. J Sci Food Agric 99:2513–2520. https://doi.org/10.1002/jsfa.9461

    Article  CAS  PubMed  Google Scholar 

  7. Bagur-González MG, Pérez-Castaño E, Sánchez-Viñas M, Gázquez-Evangelista D (2015) Using the liquid-chromatographic-fingerprint of sterols fraction to discriminate virgin olive from other edible oils. J Chromatogr A 1380:64–70. https://doi.org/10.1016/j.chroma.2014.12.052

    Article  CAS  PubMed  Google Scholar 

  8. Mahesar SA, Lucarini M, Durazzo A, Santini A, Lampe AI, Kiefer J (2019) Application of infrared spectroscopy for functional compounds evaluation in olive oil: a current snapshot. J Spectrosc 2019:5319024–5319011. https://doi.org/10.1155/2019/5319024

    Article  CAS  Google Scholar 

  9. Qiu J, Hou HY, Yang IS, Chen XB (2019) Raman spectroscopy analysis of free fatty acid in olive oil. Appl Sci 9:4510. https://doi.org/10.3390/app9214510

    Article  CAS  Google Scholar 

  10. Nam A-M, Bighelli A, Tomi F, Casanova J, Paoli M (2017) Quantification of squalene in olive oil using C-13 nuclear magnetic resonance spectroscopy. Magnetochemistry 3:34. https://doi.org/10.3390/magnetochemistry3040034

    Article  CAS  Google Scholar 

  11. Dankowska A, Kowalewski W (2019) Comparison of different classification methods for analyzing fluorescence spectra to characterize type and freshness of olive oils. Eur Food Res Technol 245:745–752. https://doi.org/10.1007/s00217-018-3196-z

    Article  CAS  Google Scholar 

  12. Mu TT, Chen SY, Zhang YC, Chen H, Guo P, Meng FD (2016) Portable detection and quantification of olive oil adulteration by 473-nm laser-induced fluorescence. Food Anal Methods 9:275–279. https://doi.org/10.1007/s12161-015-0199-2

    Article  Google Scholar 

  13. Dupuy N, Dréau YL, Ollivier D, Artaud J, Pinatel C, Kister J (2005) Origin of French virgin olive oil registered designation of origins predicted by chemometric analysis of synchronous excitation-emission fluorescence spectra. J Agric Food Chem 53:9361–9368. https://doi.org/10.1021/jf051716m

    Article  CAS  PubMed  Google Scholar 

  14. Zhang YC, Li T, Chen H, Chen SY, Guo P, Li Y (2019) Excitation wavelength analysis of a laser-induced fluorescence technique for quantification of extra virgin olive oil adulteration. Appl Opt 58:4484–4491. https://doi.org/10.1364/AO.58.004484

    Article  CAS  PubMed  Google Scholar 

  15. Maurya SK, Dutta C, Goswami D (2017) Concentration dependent approach for accurate determination of two-photon absorption cross-section of fluorescent dye molecule. J Fluoresc 27:1399–1403. https://doi.org/10.1007/s10895-017-2076-4

    Article  CAS  PubMed  Google Scholar 

  16. Satapathi S, Li L, Kumar A, Huo HB, Anandakathir R, Shen MY, Samuelson LA, Kumar J (2011) Strong two-photon-induced fluorescence from a highly soluble polythiophene. Opt Commun 284:3612–3614. https://doi.org/10.1016/j.optcom.2011.03.048

    Article  CAS  Google Scholar 

  17. Qiao LL, He F, Wang C, Liao Y, Cheng Y, Sugioka K, Midorikawa K, Pan CG, Wei XB (2011) Fabrication of a micro-optical lens using femtosecond laser 3D micromachining for two-photon imaging of bio-tissues. Opt Commun 284:2988–2991. https://doi.org/10.1016/j.optcom.2011.01.082

    Article  CAS  Google Scholar 

  18. Giovacchino LD, Sestili S, Vincenzo DD (2002) Influence of olive processing on virgin olive oil quality. Eur J Lipid Sci Technol 104:587–601. https://doi.org/10.1002/1438-9312(200210)104:9/10<587::AID-EJLT587>3.0.CO;2-M

    Article  Google Scholar 

  19. Snouber JA, Abdelraziq I, Abu-Jafar M, Zyoud A, Hilal H, Pasqualone A (2019) Physical and chemical behaviour of Nabali Mohassan single-cultivar olive oil during prolonged storage. J Sci Food Agric 99:2757–2762. https://doi.org/10.1002/jsfa.9477

    Article  CAS  PubMed  Google Scholar 

  20. Cohoon GA, Kieu K, Norwood RA (2014) Observation of two-photon fluorescence for Rhodamine 6G in microbubble resonators. Opt Lett 39:3098–3101. https://doi.org/10.1364/OL.39.003098

    Article  CAS  PubMed  Google Scholar 

  21. Sikorska E, Khmelinskii I, Sikorski M (2012) Analysis of olive oils by fluorescence spectroscopy: methods and applications. Olive Oil-Constituents, Quality, Health Properties and Bioconversions 2012:63–88. https://doi.org/10.5772/30676

    Article  Google Scholar 

  22. Saleem M, Ahmad N, Ali H, Bilal M, Khan S, Ullah R, Ahmed M, Mahmood S (2017) Investigating temperature effects on extra virgin olive oil using fluorescence spectroscopy. Laser Phys 27:125602. https://doi.org/10.1088/1555-6611/aa8cd7

    Article  CAS  Google Scholar 

  23. Escuderos ME, Sayago A, Morales MT, Aparicio R (2009) Evaluation of α-tocopherol in virgin olive oil by a luminiscent method. Grasas Aceites 60:336–342. https://doi.org/10.3989/gya.108308

    Article  CAS  Google Scholar 

  24. Nikolova K, Eftimov T, Perifanova M, Brabant D (2012) Quick fluorescence method for the distinguishing of vegetable oils. J Food Eng 2:674–684. https://doi.org/10.17265/2159-5828/2012.12.002

    Article  CAS  Google Scholar 

  25. Kongbonga YGM, Ghalila H, Onana MB, Majdi Y, Lakhdar ZB, Mezlini H, Sevestre-Ghalila S (2011) Characterization of vegetable oils by fluorescence spectroscopy. Food Nutr Sci 2:692–699. https://doi.org/10.4236/fns.2011.27095

    Article  CAS  Google Scholar 

  26. Kyriakidis NB, Skarkalis P (2000) Fluorescence spectra measurement of olive oil and other vegetable oils. J AOAC Int 83:1435–1439. https://doi.org/10.1093/jaoac/83.6.1435

    Article  CAS  PubMed  Google Scholar 

  27. Kıralan SS, Toptanci İ, Abacıgil TÖ, Ramadan MF (2020) Phthalates levels in olive oils and olive pomace oils marketed in Turkey. Food Addit Contam A 37:1332–1338. https://doi.org/10.1080/19440049.2020.1766120

    Article  CAS  Google Scholar 

  28. Lioupi A, Nenadis N, Theodoridis G (2020) Virgin olive oil metabolomics: a review. J Chromatogr B 1150:122161. https://doi.org/10.1016/j.jchromb.2020.122161

    Article  CAS  Google Scholar 

  29. Rotich V, Riza DFA, Giametta F, Suzuki T, Ogawa Y, Kondo N (2020) Thermal oxidation assessment of Italian extra virgin olive oil using an UltraViolet (UV) induced fluorescence imaging system. Spectrochim Acta A 237:118373. https://doi.org/10.1016/j.saa.2020.118373

    Article  CAS  Google Scholar 

  30. Guimet F, Ferré J, Boqué R (2005) Rapid detection of olive-pomace oil adulteration in extra virgin olive oils from the protected denomination of origin "Siurana" using excitation-emission fluorescence spectroscopy and three-way methods of analysis. Anal Chim Acta 544:143–152. https://doi.org/10.1016/j.aca.2005.02.013

    Article  CAS  Google Scholar 

  31. Cheikhousman R, Zude M, Bouveresse DJ-R, Léger CL, Rutledge DN, Birlouez-Aragon I (2005) Fluorescence spectroscopy for monitoring deterioration of extra virgin olive oil during heating. Anal Bioanal Chem 382:1438–1443. https://doi.org/10.1007/s00216-005-3286-1

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work is supported by Sichuan Science and Technology Program (No.2020YJ0431).

Author information

Authors and Affiliations

Authors

Contributions

Zhong XQ conceived the research thought, designed the experimental scheme, revised and edited the manuscript. Xu JM processed and analyzed the experimental data, organized the figures in the manuscript, and wrote the first draft of the manuscript. Xu JM, Sun MY, Chen QL, Zeng ZK, and Chen YS performed fluorescence measurements. Cheng K provided assistance for the experiments and participated in discussing and demonstrating the research results.

Corresponding author

Correspondence to Xianqiong Zhong.

Ethics declarations

Conflict of Interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Zhong, X., Sun, M. et al. Two-Photon Fluorescence Study of Olive Oils at Different Excitation Wavelengths. J Fluoresc 31, 609–617 (2021). https://doi.org/10.1007/s10895-021-02692-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02692-6

Keywords

Navigation