Skip to main content
Log in

Morphological, cytological and phytochemical studies in naturally occurring diploid and tetraploid populations of Physochlaina praealta from high altitudes of Trans-Himalaya

  • Original Research Paper
  • Published:
JPC – Journal of Planar Chromatography – Modern TLC Aims and scope Submit manuscript

Abstract

Physochlaina praealta samples were studied macromorphologically and cytomorphologically along with their detailed phytochemical investigation. The concentration of phytoconstituents showed a strong positive correlation with the ploidy level and altitudinal gradients. The total phenol content was detected maximum in the methanolic extract of leaves and stem of higher altitudinal plants in both cytotypes (2x, 4x). The maximum content of flavonoids was detected in the methanolic extract of root and leaves. Root organ from higher elevation possessed the highest DPPH radical scavenging activity, with the maximum percentage of inhibition being obtained in methanolic extracts. The plants of both cytotypes from higher elevations accumulate an abundant quantity of secondary metabolites. The two cytotypes differ from each other with respect to various morphometric characters thereby depicting the drastic affect of polyploidy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

FCR:

Folin–Ciocalteu reagent

AlCl3 :

Aluminum chloride

DPPH:

1,1-diphenyl-2-picrylhydrazyl

AT:

Atropine

CA:

Caffeic acid

CHA:

Chlorogenic acid

KOH:

Potassium hydroxide

QE:

Quercetin

TPC:

Total phenol content

TFC:

Total flavonoid content

HPTLC:

High-performance thin-layer chromatography

LOD:

Limit of detection

LOQ:

Limit of quantification

SD:

Standard deviation

PK:

Panikher

MB:

Mulbekh

SP:

Sapi

KH:

Khardung

HU:

Hundur

ICH:

The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use

References

  1. Ravishankara MN, Shrivastava N, Padh H, Rajani M (2001) HPTLC method for the estimation of alkaloids of Cinchona officinalis stems bark and its marketed formulations. Planta Med 67:294–296

    Article  CAS  Google Scholar 

  2. Frommenwiler DA, Booker A, Vila R, Heinrich M, Reich E, Cañigueral S (2019) Comprehensive HPTLC fingerprinting as a tool for a simplified analysis of purity of Ginkgo products. J Ethnopharmacol 243:112084

    Article  CAS  Google Scholar 

  3. Al-Alamein AMA, El-Rahman MKA, Abdel-Moety EM, Fawaz EM (2019) Green HPTLC–densitometric approach for simultaneous determination and impurity-profiling of ebastine and phenylephrine hydrochloride. Microchem J 147:1097–1102

    Article  Google Scholar 

  4. Mukherjee D, Kumar NS, Khatua T, Mukherjee PK (2010) Rapid validated HPTLC method for estimation of betulinic acid in Nelumbo nucifera (Nymphaeaceae) rhizome extract. Phytochem Anal 21:556–560

    Article  CAS  Google Scholar 

  5. Takshak S, Agrawal SB (2019) Defense potential of secondary metabolites in medicinal plants under UV-B stress. J Photochem Photobiol, B 193:51–88

    Article  CAS  Google Scholar 

  6. Naikoo MI, Dar MI, Raghib F, Jaleel H, Ahmad B, Raina A, Khan FA, Naushin F (2019) Role and regulation of plants phenolics in abiotic stress tolerance: an overview. In: Khan MIR, Reddy PS, Ferrante A, Khan NA (eds) Plant signalling molecules. Woodhead Publishing, Duxford, pp 157–168

    Chapter  Google Scholar 

  7. Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q (2018) Response of plant secondary metabolites to environmental factors. Molecules 23:762

    Article  Google Scholar 

  8. Jeelani SM, Farooq U, Gupta AP, Lattoo SK (2017) Phytochemical evaluation of major bioactive compounds in different cytotypes of five species of Rumex L. Ind Crop Prod 109:897–904

    Article  CAS  Google Scholar 

  9. Pradhan SK, Gupta RC, Goel RK (2018) Differential content of secondary metabolites in diploid and tetraploid cytotypes of Siegesbeckia orientalis L. Nat Prod Res 32:2476–2482

    Article  CAS  Google Scholar 

  10. Zidorn C (2009) Altitudinal variation of secondary metabolites in flowering heads of the Asteraceae: trends and causes. Phytochem Rev 9:197–203

    Article  Google Scholar 

  11. Ganzera M, Guggenberger M, Stuppner H, Zidorn C (2008) Altitudinal variation of secondary metabolite profiles in flowering heads of Matricaria chamomilla cv. BONA. Planta Med 74:453–457

    Article  CAS  Google Scholar 

  12. Gorinova NI, Atanassov AI, Velcheva MP (1999) Physochlaina species. In vitro culture and the production of physochlaine and other tropane alkaloids. In: Bajaj YPS (ed) Medicinal and aromatic plants XI, biotechnology in agriculture and forestry, vol 43. Springer, Berlin, pp 350–363

    Google Scholar 

  13. Khaidav TS, Menshikova TA (1978) In: Lekarstvenie rastenia v Mongolskoi medizine. Akademii Nauk MNR, Ulan Bator, pp 168–169

    Google Scholar 

  14. Srivastava SK, Shukla AN (2015) Flora of cold desert western Himalaya, India, vol II. Botanical Survey of India, Dehra Dun

    Google Scholar 

  15. Watt G (1892) The dictionary of economic products of India, vol IV, pt I-A. W. H. Allen & Co., London, p 226

  16. Kirtikar KR, Basu BD (1933) Indian materia medica, vol 111, 2nd edn. Lalit Mohan Basu, Allahabad, pp 1793–1794

    Google Scholar 

  17. Handa KL, Nazir BN, Chopra LC, Jamwal KS (1951) Chemical investigation of Physochlaina praealta Miers. J Sci Ind Res India 10B:182–183

    CAS  Google Scholar 

  18. Pusalkar PK, Singh DK (2012) Flora of Gangotri National Park, western Himalaya. Botanical Survey of India, Kolkata

    Google Scholar 

  19. Holmgren NH, Holmgren PK (1998) Illustrated companion to Gleason and Cronquist’s manual: illustrations of the vascular plants of northeastern United States and adjacent Canada. New York Botanical Garden, New York, NY

    Book  Google Scholar 

  20. Vermerris W, Nicholson R (2006) Isolation and identification of phenolic compounds, phenolic compound biochemistry. Springer, Dordrecht, pp 151–191

    Book  Google Scholar 

  21. Wani MS, Gupta RC, Munshi AH, Pradhan SK (2018) Phytochemical screening, total phenolics, flavonoid content and antioxidant potential of different parts of Betula utilis D. Don from Kashmir Himalaya. IJPSR 9:2411–2417

    CAS  Google Scholar 

  22. Pothitirat W, Chomnawang MT, Supabphol R, Gritsanapan W (2009) Comparison of bioactive compounds content, free radical scavenging and anti-acne inducing bacteria activities of extracts from the mangosteen fruit rind at two stages of maturity. Fitoterapia 80:442–447

    Article  CAS  Google Scholar 

  23. Wani MS, Gupta RC, Pradhan SK, Munshi AH (2018) Estimation of four triterpenoids, betulin, lupeol, oleanolic acid, and betulinic acid, from bark, leaves, and roots of Betula utilis D. Don using a validated high-performance thin-layer chromatographic method. JPC-J Planar Chromatogr 31:220–229

    Article  CAS  Google Scholar 

  24. R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  25. Wahlich JC, Carr GP (1990) Chromatographic system suitability tests—what should we be using? J Pharm Biomed Anal 8:619–623

    Article  CAS  Google Scholar 

  26. Guo WH, Li B, Zhang XS, Wang RQ (2007) Architectural plasticity and growth responses of Hippophae rhamnoides and Caragana intermedia seedlings to simulated water stress. J Arid Environ 69:385–399

    Article  Google Scholar 

  27. Jonas CS, Geber MA (1999) Variation among populations of Clarkia unguiculata (Onagraceae) along altitudinal and latitudinal gradients. Am J Bot 86:333–343

    Article  CAS  Google Scholar 

  28. Lewontin RC (1970) The units of selection. Annu Rev Ecol Evol Syst 1:1–18

    Article  Google Scholar 

  29. Stuessy TF, Jakubowsky G, Salguero Gómez R, Pfosser M, Schlüter PM, Fer T, Sun B-Y, Kato H (2006) Anagenetic evolution in island plants. J Biogeogr 33:1259–1265

    Article  Google Scholar 

  30. Tantray YR, Singhal VK, Kaur M, Gupta RC (2018) Cytomorphological comparison in natural intraspecific cytotypes (2x, 4x) in Brachyactis pubescens from Northwest Himalayas, India. Cytologia 83:245–249

    Article  Google Scholar 

  31. Choudhary N, Singh S, Siddiqui MB, Khatoon S (2014) Impact of seasons and dioecy on therapeutic phytoconstituents of Tinospora cordifolia, a Rasayana drug. Biomed Res Int. Article ID 902138

  32. Shamloo M, Babawale EA, Furtado A, Henry RJ, Eck PK, Jones PJ (2017) Effects of genotype and temperature on accumulation of plant secondary metabolites in Canadian and Australian wheat grown under controlled environments. Sci Rep 7:1–13

    Article  CAS  Google Scholar 

  33. Katoch M, Fazli IS, Suri KA, Ahuja A, Qazi GN (2011) Effect of altitude on picroside content in core collections of Picrorhiza kurrooa from the north western Himalayas. J Nat Med 65:578–582

    Article  CAS  Google Scholar 

  34. Chandra P, Purohit AN (1980) Berberine contents and alkaloid profile of Berberis species from different altitudes. Biochem Syst Ecol 8:379–380

    Article  CAS  Google Scholar 

  35. Andola HC, Gaira KS, Pandey A, Bhatt ID, Rawal RS (2019) Influence of habitat characteristics and altitude on berberine content in Berberis jaeschkeana CK Schneid. Proc Natl Acad Sci India Sect B Biol Sci 83:967–972

    Article  Google Scholar 

  36. Bhadrecha P, Kumar V, Kumar M (2017) Medicinal plant growing under sub-optimal conditions in trans-Himalaya region at high altitude. Def Life Sci J 2:37–45

    Article  Google Scholar 

  37. Mirzamatov RT, Lutfullin KL, Malikov VM, Yunusov SY (1974) Isolation of apohyoscine and of 6-hydroxyatropine from Physochlaina alaica. Chem Nat Compd 10:427

    Article  Google Scholar 

  38. Evans WC (1979) Tropane alkaloids of the Solanaceae. In: Hawkes GC, Lester RN, Skelding AD (eds) The biology and taxonomy of the Solanaceae. Linnean society symposium series no. 7. Academic Press, London, pp 241–254

  39. Dhawan OP, Lavania UC (1996) Enhancing the productivity of secondary metabolites via induced polyploidy: a review. Euphytica 87:81–89

    Article  CAS  Google Scholar 

  40. Lavania UC, Srivastava S, Lavania S, Basu S, Misra NK, Mukai Y (2012) Autopolyploidy differentially influences body size in plants, but facilitates enhanced accumulation of secondary metabolites, causing increased cytosine methylation. Plant J 71:539–549

    Article  CAS  Google Scholar 

  41. Xu C-G, Tang T-X, Chen R, Liang C-H, Liu X-Y, Wu C-L, Yang Y-S, Yang D-P, Wu H (2014) A comparative study of bioactive secondary metabolite production in diploid and tetraploid Echinacea purpurea (L.) Moench. Plant Cell, Tissue Organ Cult 116:323–333

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors wish to thank the University Grant Commission, New Delhi for providing financial assistance under the DRS, SAP I, II & III, and ASSIST Programme and also awarding Junior Research Fellowship to Younas Rasheed Tantray (Award Letter No. 2121430298 12/8/2015). Authors are also thankful to Head, Department of Botany, Punjabi University, Patiala for providing necessary laboratory, herbarium, and library facilities. Thanks are also due to In-charge IPLS-DBT project (BT/PR 4548/INF/22/146/2012) for laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younas Rasheed Tantray.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tantray, Y.R., Wani, M.S., Pradhan, S.K. et al. Morphological, cytological and phytochemical studies in naturally occurring diploid and tetraploid populations of Physochlaina praealta from high altitudes of Trans-Himalaya. JPC-J Planar Chromat 33, 567–577 (2020). https://doi.org/10.1007/s00764-020-00075-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00764-020-00075-4

Keywords

Navigation