Skip to main content
Log in

Copper-Doped Nickel Zinc Nanoferrites by Solution-Combustion Synthesis Using Sucrose as a Fuel

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract—

Copper-doped nickel zinc nanoferrites Ni0.45Zn0.55 – xCuxFe2O4 (x = 0.0, 0.1, 0.2, 0.3) were prepared by solution-combustion synthesis using sucrose as a fueland characterized by XRD, TEM, FTIR, and Raman spectra. The XRD results suggest the formation of single-phasenanoferrites with a cubic spinel structure. The FTIR spectra of synthesized nanoferrites showed two strong absorption bands (υ1 and υ2) at 569 cm–1 and 422 cm–1. For synthesized materials, their structural and elastic parameters were determined as a function of x. Our results may turn interesting to those engaged in combustion synthesis of substituted ferrites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Mallapur, M.M., Shaikh, P.A., Kambale, R.C., Jamadar, H.V., Mahamuni, P.U., and Chougule, B.K., Structural and electrical properties of nanocrystalline cobalt substituted nickel zinc ferrite, J. Alloys Compd., 2009, vol. 479, no. 3, pp. 797–802. https://doi.org/10.1016/j.jallcom.2009.01.142

    Article  CAS  Google Scholar 

  2. Koseoglu, Y., Alan, F., Tan, M., and Yilgin, R., and Ozturk, M., Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles, Ceram. Int., 2012, vol. 38, no. 5, pp. 3625–3634. https://doi.org/10.1016/j.ceramint.2012.01.001

    Article  CAS  Google Scholar 

  3. Patange, S.M., Shirsath, S.E., Lohar, K.S., Algude, S.G., Kamble, S.R., Kulkarni, N., Mane, D.R., and Jadhav, K.M., Infrared spectral and elastic moduli study of NiFe2–xCrxO4 nanocrystalline ferrites, J. Magn. Magn. Mater., 2013, vol. 325, pp. 107–111. https://doi.org/10.1016/j.jmmm.2012.08.022

    Article  CAS  Google Scholar 

  4. Shinde, T.J., Gadkari, A.B., and Vasambekar, P.N., Magnetic properties and cation distribution study of nanocrystalline Ni–Zn ferrites, J. Magn. Magn. Mater., 2013, vol. 333, pp. 152–155. https://doi.org/10.1016/j.jmmm.2012.12.049

    Article  CAS  Google Scholar 

  5. Raghavender, A.T., Biliskov, N., and Skoko, Z., XRD and IR analysis of nanocrystalline Ni–Zn ferrite synthesized by the sol–gel method, Mater. Lett., 2011, vol. 65, no. 4, pp. 677–680. https://doi.org/10.1016/j.matlet.2010.11.071

    Article  CAS  Google Scholar 

  6. Berger, R., Bissey, J.C., Kliava, J., Daubric, H., and Estournes, C., Temperature dependence of superparamagnetic resonance of iron oxide nanoparticles, J. Magn. Magn. Mater., 2001, vol. 234, no. 3, pp. 535–544. https://doi.org/10.1016/S0304-8853(01)00347-X

  7. Ataie, A., Piramoon, M.R., Harris, I.R., and Ponton, C.B., Effect of hydrothermal synthesis environment on the particle morphology, chemistry and magnetic properties of barium hexaferrite, J. Mater. Sci., 1995, vol. 30, pp. 5600–5606. https://doi.org/10.1007/BF00356692

    Article  CAS  Google Scholar 

  8. Davies, K.J., Wells, S., Upadhyay, R.V., Charles, S.W., Grady, K.O., El Hilo, M., Meaz, T., and Morup, S., The observation of multi-axial anisotropy in ultrafine cobalt ferrite particles used in magnetic fluids, J. Magn. Magn. Mater., 1995, vol. 149, no. 1, pp. 14–18. https://doi.org/10.1016/0304-8853(95)00319-3

    Article  CAS  Google Scholar 

  9. Chen, J.P., Sorensen, C.M., Klabunde, K.J., Hadjipanayis, G.C., Delvin, E., and Kostikas, A., Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, vol. 54, no. 13, pp. 9288–9296. https://doi.org/10.1103/PhysRevB.54.9288

    Article  CAS  Google Scholar 

  10. Poddar, P., Srikanth, H., Morrison, S.A., and Carpenter, E.E., Inter-particle interactions and magnetism in manganese–zinc ferrite nanoparticles, J. Magn. Magn. Mater., 2005, vol. 288, pp. 443–451. https://doi.org/10.1016/j.jmmm.2004.09.135

    Article  CAS  Google Scholar 

  11. Gubbala, S., Nathani, H., Koizol, K., and Misra, R.D.K., Magnetic properties of nanocrystalline Ni–Zn, Zn–Mn, and Ni–Mn ferrites synthesized by reverse micelle technique, Phys. B: Condens. Matter, 2004, vol. 348, no. 1, pp. 317–328. https://doi.org/10.1016/j.physb.2003.12.017

    Article  CAS  Google Scholar 

  12. Sisk, M., Kilbride, I., and Barker, A.J., Production of manganese zinc ferrites via the hydrothermal decomposition of metal(III) acetates and citrates, J. Mater., 1995, vol. 14, no. 3, pp. 153–154.

    CAS  Google Scholar 

  13. Cullity, B.D., Elements of X-ray Diffraction, Boston: Addison–Wesley, 1956.

    Google Scholar 

  14. Belavi, P.B., Naik, L.R., and Chavan, G.N., Synthesis and characterization of Ni–Cd–Cu ferrites, J. Shivaji Univ: Sci. Technol., 2015, vol. 41, no. 2, pp. 1–2.

    Google Scholar 

  15. Belavi, P.B., Chavan, G.N., Naik, L.R., Somashekar, R., and Kotnala, R.K., Structural, electrical and magnetic properties of cadmium substituted nickel–copper ferrites, Mater. Chem. Phys., 2012, vol. 132, no. 1, pp. 138–144. https://doi.org/10.1016/j.matchemphys.2011.11.009

    Article  CAS  Google Scholar 

  16. Sattar, A.A., El-Sayed, H.M., El-Shokrofy, K.M., and Eltabey, M.M., Improvement of the magnetic properties of Mn-Ni-Zn ferrite by the non-magnetic Al3+ ion substitution, J. Appl. Sci., 2005, vol. 5, no. 1, pp. 162–168. https://doi.org/10.3923/jas.2005.162.168

    Article  Google Scholar 

  17. Patil, M.R., Rendale, M.K., Mathad, S.N., and Pujar, R.B., FTIR spectra and elastic properties of Cd-substituted Ni–Zn ferrites, Int. J. Self-Propag. High-Temp. Synth., 2017, vol. 26, no. 1, pp. 33–39.https://doi.org/10.3103/S1061386217010083

    Article  CAS  Google Scholar 

  18. Waldron, R.D., Infrared spectra of ferrites, Phys. Rev., 1955, vol. 99, pp. 1727–1735. https://doi.org/10.1103/PhysRev.99.1727

    Article  CAS  Google Scholar 

  19. Chavan, G.N., Belavi, P.B., Naik, L.R., Bammannavar, B.K., Ramesh, K.P., and Kumar, S., Electrical and magnetic properties of nickel substituted cadmium ferrites, Int. J. Sci., 2013, vol. 2, no. 12, pp. 82–89.

    Google Scholar 

  20. Mazen, S.A. and Abu-Elsaad, N.I., IR Spectra, elastic and dielectric properties of Li–Mn ferrite, Condens. Matter Phys., 2012, vol. 2012, pp. 1–9. https://doi.org/10.5402/2012/907257

    Article  CAS  Google Scholar 

  21. Wooster, W.A., Physical properties and atomic arrangements in crystals, Rep. Prog. Phys., vol. 16, 1953.

    Book  Google Scholar 

  22. Kounsalye, J.S., Humbe, A.V., Chavan, A.R., and Jadhav, M.K., Rietveld, cation distribution and elastic investigations of nanocrystalline Li0.5+0.5xZrxFe2.5–1.5xO4 synthesized via sol–gel route, Phys. B: Condens. Matter., 2018, vol. 547, pp. 64–71. https://doi.org/10.1016/j.physb.2018.08.007

    Article  CAS  Google Scholar 

  23. Rao, S.S. and Ravinder, D., Composition dependence of elastic moduli of gadolinium-substituted nickel–zinc ferrites, Mater. Lett., 2003, vol. 57, no. 24, pp. 3802–3804. https://doi.org/10.1016/S0167-577X(03)00088-0

    Article  CAS  Google Scholar 

  24. Patil, V.G., Shirsath, S.E., More, S.D., Shukla, S.J., and Jadhav, K.M., Effect of zinc substitution on structural and elastic properties of cobalt ferrite, J. Alloys Compd., 2009, vol. 488, no. 1, pp. 199–203. https://doi.org/10.1016/j.jallcom.2009.08.078

    Article  CAS  Google Scholar 

  25. Reddy, P.V., High-temperature elastic behavior of Mn-Mg mixed ferrites, Phys. Status Solidi, 1988, vol. 108, no. 2, pp. 607–611. https://doi.org/10.1002/pssa.2211080215

    Article  CAS  Google Scholar 

  26. Ravinder, D., Balachander, L., and Venudhar, Y.C., Elastic behaviour of manganese substituted lithium ferrites, Mater. Lett., 2001, vol. 49, no. 3, pp. 205–208. https://doi.org/10.1016/S0167-577X(00)00369-4

    Article  CAS  Google Scholar 

  27. Bhaskar. A. and Murthy, S.R., Effect of sintering temperatures on the elastic properties of Mn (1%) added MgCuZn ferrites, J. Magn. Magn. Mater., 2014, vol. 355, pp. 100–103. https://doi.org/10.1016/j.jmmm.2013.11.053

    Article  CAS  Google Scholar 

  28. Modi, K.B., Rangolia, M.K., Chhantbar, M.C., and Joshi, H.H., Study of infrared spectroscopy and elastic properties of fine and coarse grained nickel–cadmium ferrites, J. Mater. Sci., 2006, vol. 41, pp. 7308–7318. https://doi.org/10.1007/s10853-006-0929-3

    Article  CAS  Google Scholar 

  29. Galagali, S.L., Patil, R.A., Adaki, R.B., Hiremath, C.S., Mathad, S.N., and Pujar, R.B., FTIR and elastic properties of Mg1–xCdxFe2O4 ferrite systems, Songklanakarin J. Sci. Technol., 2019, vol. 41, no. 5, pp. 959–1203.https://doi.org/10.14456/sjst-psu.2019.125

    Article  Google Scholar 

  30. Kumari, S., Kumar, V., Kumar, P., Kar, M., and Kumar, L., Structural and magnetic properties of nanocrystalline yttrium substituted cobalt ferrite synthesized by the citrate precursor technique, Adv. Powder Technol., 2015, vol. 26, no. 1, pp. 213–223. https://doi.org/10.1016/j.apt.2014.10.002

    Article  CAS  Google Scholar 

  31. Wang, Z., Lazor, P., Saxena, S.K., and St.CO’Neill, H., High pressure Raman spectroscopy of ferrite MgFe2O4, Mater. Res. Bull., 2002, vol. 37, no. 9, pp. 1589–1602. https://doi.org/10.1016/S0025-5408(02)00819-X

    Article  CAS  Google Scholar 

  32. Mohit, K., Rout, S.K., Parida, S., Singh, G.P., Sharma, S.K., Pradhan S.K., and Kim, I.W., Structural, optical and dielectric studies of NixZn1–xFe2O4 prepared by auto combustion route, Phys. B: Condens. Matter., 2012, vol. 407, no. 6, pp. 935–942. https://doi.org/10.1016/j.physb.2011.12.003

    Article  CAS  Google Scholar 

  33. Kurian, J. and Mathew, M. J., Structural, optical and magnetic studies of CuFe2O4, MgFe2O4, and ZnFe2O4 nanoparticles prepared by hydrothermal/ solvothermal method, J. Magn. Magn. Mater., 2018, vol. 451, pp. 121–130. https://doi.org/10.1016/j.jmmm.2017.10.124

    Article  CAS  Google Scholar 

  34. Nandan, B., Bhatnagar, M.C., and Kashyap, S.C., Cation distribution in nanocrystalline cobalt substituted nickel ferrites: X-ray diffraction and Raman spectroscopic investigations, J. Phys. Chem. Solids, 2019, vol. 129, pp. 298–306. https://doi.org/10.1016/j.jpcs.2019.01.017

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. M. Shweta, L. R. Naik or S. N. Mathad.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shweta, G.M., Naik, L.R., Pujar, R.B. et al. Copper-Doped Nickel Zinc Nanoferrites by Solution-Combustion Synthesis Using Sucrose as a Fuel. Int. J Self-Propag. High-Temp. Synth. 29, 208–212 (2020). https://doi.org/10.3103/S1061386220040135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386220040135

Keywords:

Navigation