Skip to main content
Log in

Ni0.4Zn0.6Fe2O4 Nanopowders by Solution-Combustion Synthesis: Influence of Red/Ox Ratio on their Morphology, Structure, and Magnetic Properties

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Nickel-zinc ferrite nanopowders Ni0.4Zn0.6Fe2O4 were prepared by glycine (G)–nitrate (N) solution-combustion synthesis and the influence of G/N ratio on their chemical composition, morphology, structure, crystallite size, and magnetic behavior was characterized by XRD, EDX, SEM, FTIR spectroscopy, and vibration magnetometry. According to XRD data, the formation of Ni–Zn ferrite gets started at G/N = 0.4. The observed influence of G/N ratio on the structural and magnetic parameters of Ni–Zn ferrites opens up a route to producing powders with crystallite size D in the range 24.6–47.1 nm, extent of conversion α up to 94%, coercive force Hc from 7.88 to71.78 Oe, remanence magnetization Mr from 2.42 to 31.81 emu/g, and saturation magnetization Ms from 51.06 to 90.66 emu/g. The maximum values of magnetic characteristics were reached at a stoichiometric ratio of glycine to nitrogen in nitrates (G/N = 0.6).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Nguyen, Y.M., Lopez, T., Laur, J.-P., Bourrier, D., Charlot, S., Nava, Z.V., Bley, V., Combettes, C., and Brunet, M., Soft ferrite cores characterization for integrated micro-inductors, J. Phys.: Conf. Ser., 2013, vol. 476, 012139. https://doi.org/10.1088/1742-6596/476/1/012139

    Article  CAS  Google Scholar 

  2. Ozgur, U., Alivov, Y., and Morkoc, H., Microwave ferrites: 2. Passive components and electrical tuning, J. Mater. Sci.: Mater. Electron., 2009, vol. 20, pp. 911–952. https://doi.org/10.1007/s10854-009-9924-1

    Article  CAS  Google Scholar 

  3. Dyachenko, S.V., Vaseshenkova, M.A., Martinson, K.D., Cherepkova, I.A., and Zhernovoi, A.I., Synthesis and properties of magnetic fluids produced on the basis of magnetic particles, Russ. J. Appl. Chem., 2016, vol. 89, no. 5, pp. 690–696. https://doi.org/10.1134/S1070427216050025

    Article  CAS  Google Scholar 

  4. Hernandez, P.T., Kuznetsov, M.V., and Morozov, Yu.G., High-temperature synthesis of nickel-based nanoparticles for use as materials in sensors of potentially hazardous gases, Int. J. Self-Propag. High-Temp. Synth., 2019, vol. 28, no. 3, pp. 159–172. https://doi.org/10.3103/S1061386219030063

    Article  Google Scholar 

  5. Martinson, K.D., Kozyritskaya, S.S., Panteleev, I.B., and Popkov, V.I., Low coercivity microwave ceramics based on LiZnMn ferrite synthesized via glycine–nitrate combustion, Nanosystems: Phys. Chem. Math., 2019, vol. 10, no. 3, pp. 313–317. https://doi.org/10.17586/2220-8054-2019-10-3-313-317

    Article  CAS  Google Scholar 

  6. Kulkarni, A.B. and Mathad, S.N., Synthesis and structural analysis of Co–Zn–Cd ferrite by Williamson–Hall and size–strain plot methods, Int. J. Self-Propag. High-Temp. Synth., 2018, vol. 27, no. 1, pp. 37–43. https://doi.org/10.3103/S106138621801003X

    Article  CAS  Google Scholar 

  7. Gomes, G.A., Costa, G.L., and Figueiredo, A.B.-H.S., Synthesis of ferrite nanoparticles Cu1–xAgxFe2O4 and evaluation of potential antibacterial activity, J. Mater. Res. Technol., 2018, vol. 7, no. 3, pp. 381–386. https://doi.org/10.1016/j.jmrt.2018.04.021

    Article  CAS  Google Scholar 

  8. Reddy, D.H.K. and Yun, Y.-S., Spinel ferrite magnetic adsorbents: Alternative future materials for water purification?, Coord. Chem. Rev., 2016, vol. 315, pp. 90–111. https://doi.org/10.1016/j.ccr.2016.01.012

    Article  CAS  Google Scholar 

  9. Raina, O. and Manimekalai, R., Photocatalysis of cobalt zinc ferrite nanorods under solar light, Res. Chem. Intermed., 2018, vol. 44, pp. 5941–5951. https://doi.org/10.1007/s11164-018-3465-2

    Article  CAS  Google Scholar 

  10. Martinson, K.D., Kondrashkova, I.S., Omarov, S.O., Sladkovskiy, D.A., Kiselev, A.A., Kiseleva, T.Yu, and Popkov, V.I., Magnetically recoverable catalyst based on porous nanocrystalline HoFeO3 for process on n-hexane conversion, Adv. Powder Technol., 2020, vol. 31, no. 1, pp. 402–408. https://doi.org/10.1016/j.apt.2019.10.033

    Article  CAS  Google Scholar 

  11. Teo, M.L.S., Kong L.B., Li, Z.W., Lin, G.Q., and Gan, Y.B., Development of magneto-dielectric materials based on Li-ferrite ceramics: 1. Densification behavior and microstructure development, J. Alloys Compd., 2008, vol. 459, nos. 1–2, pp. 557–566. https://doi.org/10.1016/j.jallcom.2007.05.050

    Article  CAS  Google Scholar 

  12. Shirsath, S.E., Kadam, R.H., Gaikwad, A.S., Ghasemi, A., and Morisako, A., Effect of sintering temperature and the particle size on the structural and magnetic properties of nanocrystalline Li0.5Fe2.5O4, J. Magn. Magn. Mater., 2011, vol. 323, no. 23, pp. 3104–3108. https://doi.org/10.1016/j.jmmm.2011.06.065

    Article  CAS  Google Scholar 

  13. Martinson, K.D., Cherepkova, I.A., Panteleev, I.B., and Popkov, V.I., Single-step solution-combustion synthesis of magnetically soft NiFe2O4 nanopowders with controllable parameters, Int. J. Self-Propag. High-Temp. Synth., 2019, vol. 28, no. 4, pp. 266–270. https://doi.org/10.3103/S1061386219040101

    Article  CAS  Google Scholar 

  14. Lomanova, N.A., Tomkovich, M.V., Sokolov, V.V., Ugolkov, V.L., Panchuk, V.V., Semenov, V.G., Pleshakov, I.V., Volkov, M.P., and Gusarov, V.V., Thermal and magnetic behavior of BiFeO3 nanoparticles prepared by glycine-nitrate combustion, J. Nanopart. Res., 2018, vol. 20, 17. https://doi.org/10.1007/s11051-018-4125-6

    Article  CAS  Google Scholar 

  15. Chanadee, T., Combustion synthesis of nickel-ferrite magnetic materials, Int. J. Self-Propag. High-Temp. Synth., 2017, vol. 26, no. 1, pp. 40–43. https://doi.org/10.3103/S1061386217010058

    Article  CAS  Google Scholar 

  16. Harris, V.G., Modern microwave ferrites, IEEE Trans. Magn., 2012, vol. 48, pp. 1075–1104. https://doi.org/10.1109/TMAG.2011.2180732

    Article  CAS  Google Scholar 

  17. La, P., Lei, W., Wang, X., Wei, Y., and Ma, Y., Effects of excess NaClO4 on phases, size and magnetic properties of Ni–Zn ferrite powders prepared by combustion synthesis, Ceram. Int., 2015, vol. 41, no. 8, pp. 9843–9848. https://doi.org/10.1016/j.ceramint.2015.04.058

    Article  CAS  Google Scholar 

  18. Monteiro, E.S., Kasal, R.B., Moraes, N.C., Melo, G.B.M., Santos, J.C.A., and Figueiredo, A.B.-H.S., Nanoparticles of Ni1 – xZnxFe2O4 used as microwave absorbers in the X-band, Mater. Res. Suppl. 1, 2019, vol. 22, no. 1. https://doi.org/10.1590/1980-5373-mr-2019-0188

  19. Zleng, Z., Zhang, H., Yang, Q., and Jia, L., Structure and electromagnetic properties of NiZn spinel ferrite with nano-sized ZnAl2O4 additions, J. Alloys Compd., 2015, vol. 648, pp. 160–167. https://doi.org/10.1016/j.jallcom.2015.06.256

    Article  CAS  Google Scholar 

  20. Zhang, Y., Xia, A., Chen, W., and Ma, R., Structural and magnetic properties of hydrothermal spinel Ni0.4Zn0.6Fe2O4 ferrite, Mater. Res., 2015, vol. 18, no. 6. https://doi.org/10.1590/1516-1439.033115

  21. Li, L.-Z., Peng, L., Zhong, X.-X., Wang, R., and Tu, X.-Q., Structural and magnetic properties of strontium substituted NiZn ferrite nanopowders, Ceram. Int., 2016, vol. 42, no. 11, pp. 13 238–13 241. https://doi.org/10.1016/j.ceramint.2016.05.120

    Article  CAS  Google Scholar 

  22. Verma, S. and Joy, P.A., High Curie temperature of nanosized NiZn ferrite particles synthesized by a combustion method, Int. J. Nanosci., 2008, vol. 7, no. 1, pp. 43–49. https://doi.org/10.1142/S0219581X08005158

    Article  CAS  Google Scholar 

  23. Naderi, P., Masoudpanah, S.M., and Alamolhoda, S., Magnetic properties of Li0.5Fe2.5O4 nanoparticles synthesized by solution combustion method, Appl. Phys. A: Solids Surf., 2017, vol. 123, p. 702. https://doi.org/10.1007/s00339-017-1304-8

    Article  CAS  Google Scholar 

  24. Kondrashkova, I.S., Martinson, K.D., Zakharova, N.V., and Popkov, V.I., Synthesis of nanocrystalline HoFeO3 photocatalyst via heat treatment of products of glycine-nitrate combustion, Russ. J. Gen. Chem., 2018, vol. 88, pp. 2465–2471. https://doi.org/10.1134/S1070363218120022

    Article  CAS  Google Scholar 

  25. Ilhan, S., Izotova, S.G., and Komlev, A.A., Synthesis and characterization of MgFe2O4 nanoparticles prepared by hydrothermal decomposition of co-precipitated magnesium and iron hydroxides, Ceram. Int., 2015, vol. 41, no. 1, pp. 577–585. https://doi.org/10.1016/j.ceramint.2014.08.106

    Article  CAS  Google Scholar 

  26. Dyachenko, S.V., Martinson, K.D., Cherepkova, I.A., and Zhernovoi, A.I., Particle size, morphology, and properties of transition metal ferrospinels of the MFe2O4 (M = Co, Ni, Zn) type produced by glycine-nitrate combustion, Russ. J. Appl. Chem., 2016, vol. 89, pp. 535–539. https://doi.org/10.1134/S1070427216040029

    Article  CAS  Google Scholar 

  27. Anjana, V., John, S., Prakash, P., Nair, A.M., Nair, A.R., Sambhudevan, S., and Shankar, B., Magnetic properties of copper doped nickel ferrite nanoparticles synthesized by Co precipitation method, IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 310, 012024. https://doi.org/10.1088/1757-899X/310/1/012024

  28. Martinson, K.D., Panteleev, I.B., Shevchik, A.P., and Popkov, V.I., Effect of the Red/Ox ratio on the structure and magnetic behavior of Li0.5Fe2.5O4 nanocrystals synthesized by solution combustion approach, Lett. Mater., vol. 9, no. 4, pp. 475–479. https://doi.org/10.22226/2410-3535-2019-4-475-479

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 20-03-00976).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. D. Martinson.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinson, K.D., Sakhno, D.D., Belyak, V.E. et al. Ni0.4Zn0.6Fe2O4 Nanopowders by Solution-Combustion Synthesis: Influence of Red/Ox Ratio on their Morphology, Structure, and Magnetic Properties. Int. J Self-Propag. High-Temp. Synth. 29, 202–207 (2020). https://doi.org/10.3103/S106138622004007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106138622004007X

Keywords:

Navigation