Skip to main content
Log in

Computational Modeling of Compressive Behavior of Wire-Reinforced Bulk Metallic Glass Matrix Composites

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The effect of wire type and volume fraction on the compressive behavior of wire-reinforced bulk metallic glass (BMG) matrix composites were investigated using the finite element method. The composites and test procedure were simulated in the ABAQUS software, and analyses on stress propagation and extracted compressive stress–strain curves were performed, which showed an acceptable agreement with experimental results. The results exhibited that Ta, Mo, W and Stainless Steel type 302 as the reinforcement wires significantly improved the plastic strain of the composites. Meanwhile, W wires sustained the composite strength in the same level of monolithic BMG, without sacrificing noticeable plastic strain of the composite in comparison with other reinforcements. The different volume fractions of W wires showed that the trend of plastic strain progress with increase in the second phase reaches a maximum at 65% of reinforcements. This behavior is caused by the fracture mechanism of the composites which is in its optimum condition when the reinforcement volume fraction is equal to 65%. The mechanical properties of the wire-reinforced BMG composites can be modeled by using the iso-strain Voigt model, which allows the prediction of the mechanical properties of a composite from the volume-weighted averages of the components properties. The above-mentioned findings corroborate the experiments elsewhere and may be considered as a valuable starting point to lead the future researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schroers J, Adv Mater 22 (2010) 1566

    Article  CAS  Google Scholar 

  2. Conner R D, Dandliker R B, and Johnson W L, Acta Mater 46 (1998) 6089

    Article  CAS  Google Scholar 

  3. Si J J, Chen X H, Cai Y H, Wu Y D, Wang T, and Hui X H, Corros Sci 107 (2016) 123

    Article  CAS  Google Scholar 

  4. Scully J R, Gebert A, and Payer J H, J Mater Res 22 (2007) 302

    Article  CAS  Google Scholar 

  5. Lu J, Ravichandran G, and Johnson W L, Acta Mater 51 (2003) 3429

    Article  CAS  Google Scholar 

  6. Bruck H A, Christman T, Rosakis A J, and Johnson W L, Scr Metall Mater 30 (1994) 429

    Article  CAS  Google Scholar 

  7. Wright W J, Liu Y, Gu X, Van Ness K D, Robare S L, Liu X, Antonaglia J, LeBlanc M, Uhl J T, Hufnagel T C, and Dahmen, K A, J Appl Phys 119 (2016) 084908

    Article  CAS  Google Scholar 

  8. Hofmann D C, Kozachkov H, Khalifa H E, Schramm J P, Demetriou M D, Vecchio K S, Johnson W L, Hofmann D C, Kozachkov H, Khalifa H E, and Schramm J P, Modifying Bulk Metallic Glasses: Composites and Configurational States, vol 61 (2015), p. 28

  9. Qiao J, Jia H, and Liaw P K, Mater Sci Eng R Rep 100 (2016) 1

    Article  Google Scholar 

  10. Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M L, Demetriou M D, and Johnson W L, Nature 451 (2008) 1085

    Article  CAS  Google Scholar 

  11. Gargarella P, Pauly S, Khoshkhoo M S, Kühn U, and Eckert J, Acta Mater 65 (2014) 259

    Article  CAS  Google Scholar 

  12. Inoue A, Kong F L, Zhu S L, Shalaan E, and Al-Marzouki F M, Intermetallics 58 (2015) 20

    Article  CAS  Google Scholar 

  13. Qiao J W, Zhang Y, Yang H J, and Sang S B, Int J Miner Metall Mater 20 (2013) 386

    Article  CAS  Google Scholar 

  14. Hamill L, Hofmann D C, and Nutt S, Adv Eng Mater (2017). https://doi.org/10.1002/adem.201700711

    Article  Google Scholar 

  15. Zhang Y, Xu W, Tan H, and Li Y, Acta Mater 53 (2005) 2607

    Article  CAS  Google Scholar 

  16. Inoue A, Zhang W, Tsurui T, Yavari A R, and Greer A L, Philos Mag Lett 85 (2005) 221

    Article  CAS  Google Scholar 

  17. Shi Y, and Falk M L, Acta Mater 56 (2008) 995

    Article  CAS  Google Scholar 

  18. Lee S Y, Kim C P, Almer J D, Lienert U, Ustundag E, and Johnson W L, J Mater Res 22 (2007) 538

    Article  CAS  Google Scholar 

  19. Zhang L, Zhang H, Li W, Gemming T, Wang P, Bönisch M, Şopu D, Eckert J, and Pauly S, J Alloys Compd. 708 (2017) 972

    Article  CAS  Google Scholar 

  20. Khademian N, and Gholamipour R, Trans Nonferrous Met Soc China 23 (2013)1314

    Article  CAS  Google Scholar 

  21. Saeidabadi E K, Gholamipour R, and Ghasemi B, Trans Nonferrous Met Soc China 25 (2015) 2624

    Article  CAS  Google Scholar 

  22. Choi-Yim H, and Johnson W L, Appl Phys Lett 71 (1997) 3808

    Article  CAS  Google Scholar 

  23. Qiao J W, Zhang Y, and Chen G L, Mater Des 30 (2009) 3966

    Article  CAS  Google Scholar 

  24. Guo S, and Su C Mater Sci Eng A 707 (2017) 44

    Article  CAS  Google Scholar 

  25. Shamlaye K F, Laws K J, and Ferry M, Scr Mater 111 (2016) 127

    Article  CAS  Google Scholar 

  26. Chen G, Hao Y, Chen X, and Hao H, Int J Impact Eng 106 (2017) 110

    Article  Google Scholar 

  27. Lee M H, Lee J Y, Bae D H, Kim W T, Sordelet D J, and Kim D H, Intermetallics 12 (2004) 1133

    Article  CAS  Google Scholar 

  28. Kim C P, Busch R, Masuhr A, Choi-Yim H, Johnson W L, Appl Phys Lett 79 (2001) 1456

    Article  CAS  Google Scholar 

  29. Wang B P, Yu B Q, Fan Q B, Liang J Y, Wang L, Xue Y F, Zhang H F, and Fu H M, Mater Des 93 (2016) 485

    Article  CAS  Google Scholar 

  30. Choi-Yim H, Lee S Y, and Conner R D, Scr Mater 58 (2008) 763

    Article  CAS  Google Scholar 

  31. Ferry M, Laws K J, White C, Miskovic D M, Shamlaye K F, Xu W, and Biletska O, MRS Commun 3 (2013) 1

    Article  CAS  Google Scholar 

  32. Xue Y, Zhong X, Wang L, Fan Q, Zhu L, Fan B, Zhang H, and Fu H, Mater Sci Eng A 639 (2015) 417

    Article  CAS  Google Scholar 

  33. Sheikholeslami M, Ashorynejad H R, and Rana P, J Mol Liq 214 (2016) 86

    Article  CAS  Google Scholar 

  34. DaqiqShirazi M, Torabi R, Riasi A, and Nourbakhsh S A, Proc Inst Mech Eng Part C J Mech Eng Sci 13 (2017) 0954406217729420

    Google Scholar 

  35. Peng X, Atroshchenko E, Kerfriden P, and Bordas S P, Int J Fract 204 (2017) 55

    Article  Google Scholar 

  36. Baran I, Cinar K, Ersoy N, Akkerman R, and Hattel J H, Arch Comput Methods Eng 24 (2017) 365

    Article  Google Scholar 

  37. Jiang Y, and Qiu K, Mater Des 65 (2015) 410

    Article  CAS  Google Scholar 

  38. Fan G J, Liao H H, Choo H, Liaw P K, Mara N, Sergueeva A V, Mukherjee A K, and Lavernia E J, Metall Mater Trans A 38 (2007) 2001

    Article  CAS  Google Scholar 

  39. Eckert J, Das J, Pauly S, and Duhamel C, J Mater Res 22 (2007) 285

    Article  CAS  Google Scholar 

  40. Malekan M, Shabestari S G, Zhang W, Seyedein S H, Gholamipour R, Makino A, and Inoue A, Mater Sci Eng A 527 (2010) 7192

    Article  CAS  Google Scholar 

  41. Zukas J A., and Scheffler D R, Int J Impact Eng 24 (2000) 925

    Article  Google Scholar 

  42. Kim H S, Mater Sci Eng A 289 (2000) 30

    Article  Google Scholar 

  43. Scudino S, Surreddi K B, Sager S, Sakaliyska M, Kim J S, Löser W, and Eckert J, J Mater Sci 43 (2008) 4518

    Article  CAS  Google Scholar 

  44. Chawla K K Composite Materials, Science and Engineering, Ch. 10, Springer, New York (1987) p 177

    Google Scholar 

  45. Dieter G E, Mechanical Metallurgy, 3rd edn, Mc Graw‐Hill Book Co., New York (1986) p 209

    Google Scholar 

  46. Lee S Y, Clausen B, Üstündag E, Choi-Yim H, Aydiner C C, and Bourke M A, Mater Sci Eng A 399 (2005) 128

    Article  CAS  Google Scholar 

  47. Zhang H, Zhang Z F, Wang Z G, Zhang H F, Zang Q S, and Qiu K Q, Metall Mater Trans A 37 (2006) 2459

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Malekan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daghigh Shirazi, H., Malekan, M. Computational Modeling of Compressive Behavior of Wire-Reinforced Bulk Metallic Glass Matrix Composites. Trans Indian Inst Met 74, 649–658 (2021). https://doi.org/10.1007/s12666-021-02194-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02194-w

Keywords

Navigation