Skip to main content
Log in

Discrete Schrödinger Operator on a Tree, Angelesco Potentials, and Their Perturbations

  • Research Articles
  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We consider a class of discrete Schrödinger operators on an infinite homogeneous rooted tree. Potentials for these operators are given by the coefficients of recurrence relations satisfied on a multidimensional lattice by multiple orthogonal polynomials. For operators on a binary tree with potentials generated by multiple orthogonal polynomials with respect to systems of measures supported on disjoint intervals (Angelesco systems) and for compact perturbations of such operators, we show that the essential spectrum is equal to the union of the intervals supporting the orthogonality measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis (Fizmatgiz, Moscow, 1961; Oliver & Boyd, Edinburgh, 1965).

    MATH  Google Scholar 

  2. C. Allard and R. Froese, “A Mourre estimate for a Schrödinger operator on a binary tree,” Rev. Math. Phys. 12 (12), 1655–1667 (2000).

    Article  MathSciNet  Google Scholar 

  3. A. Angelesco, “Sur deux extensions des fractions continues algébriques,” C. R. Acad. Sci., Paris 168, 262–265 (1919).

    MATH  Google Scholar 

  4. A. I. Aptekarev, “Asymptotics of simultaneously orthogonal polynomials in the Angelesco case,” Math. USSR, Sb. 64 (1), 57–84 (1989) [transl. from Mat. Sb. 136 (1), 56–84 (1988)].

    Article  MathSciNet  Google Scholar 

  5. A. I. Aptekarev, S. A. Denisov, and M. L. Yattselev, “Self-adjoint Jacobi matrices on trees and multiple orthogonal polynomials,” Trans. Am. Math. Soc. 373 (2), 875–917 (2020).

    Article  MathSciNet  Google Scholar 

  6. A. I. Aptekarev, S. A. Denisov, and M. L. Yattselev, “Jacobi matrices on trees generated by Angelesco systems: Asymptotics of coefficients and essential spectrum,” arXiv: 2004.04113 [math.SP].

  7. A. I. Aptekarev, M. Derevyagin, and W. Van Assche, “On 2D discrete Schrödinger operators associated with multiple orthogonal polynomials,” J. Phys. A: Math. Theor. 48 (6), 065201 (2015).

    Article  Google Scholar 

  8. A. I. Aptekarev, M. Derevyagin, and W. Van Assche, “Discrete integrable systems generated by Hermite–Padé approximants,” Nonlinearity 29 (5), 1487–1506 (2016).

    Article  MathSciNet  Google Scholar 

  9. A. I. Aptekarev, V. Kalyagin, G. López Lagomasino, and I. A. Rocha, “On the limit behavior of recurrence coefficients for multiple orthogonal polynomials,” J. Approx. Theory 139 (1–2), 346–370 (2006).

    Article  MathSciNet  Google Scholar 

  10. A. I. Aptekarev and R. Kozhan, “Differential equations for the recurrence coefficients limits for multiple orthogonal polynomials from a Nevai class,” J. Approx. Theory 255, 105409 (2020).

    Article  MathSciNet  Google Scholar 

  11. J. Breuer, S. Denisov, and L. Eliaz, “On the essential spectrum of Schrödinger operators on trees,” Math. Phys. Anal. Geom. 21 (4), 33 (2018).

    Article  Google Scholar 

  12. J. Breuer and R. L. Frank, “Singular spectrum for radial trees,” Rev. Math. Phys. 21 (7), 929–945 (2009).

    Article  MathSciNet  Google Scholar 

  13. S. A. Denisov, “On Rakhmanov’s theorem for Jacobi matrices,” Proc. Am. Math. Soc. 132 (3), 847–852 (2004).

    Article  MathSciNet  Google Scholar 

  14. V. Georgescu and S. Golénia, “Isometries, Fock spaces, and spectral analysis of Schrödinger operators on trees,” J. Funct. Anal. 227 (2), 389–429 (2005).

    Article  MathSciNet  Google Scholar 

  15. A. A. Gonchar and E. A. Rakhmanov, “On convergence of simultaneous Padé approximants for systems of functions of Markov type,” Proc. Steklov Inst. Math. 157, 31–50 (1983) [transl. from Tr. Mat. Inst. Steklova 157, 31–48 (1981)].

    MATH  Google Scholar 

  16. M. Keller, D. Lenz, and S. Warzel, “Absolutely continuous spectrum for random operators on trees of finite cone type,” J. Anal. Math. 118 (1), 363–396 (2012).

    Article  MathSciNet  Google Scholar 

  17. E. L. Korotyaev and A. Laptev, “Trace formulas for a discrete Schrödinger operator,” Funct. Anal. Appl. 51 (3), 225–229 (2017) [transl. from Funkts. Anal. Prilozh. 51 (3), 81–86 (2017)].

    Article  MathSciNet  Google Scholar 

  18. E. L. Korotyaev and V. A. Sloutsh, “Asymptotics and estimates for the discrete spectrum of the Schrödinger operator on a discrete periodic graph,” Algebra Anal. 32 (1), 12–39 (2020).

    Google Scholar 

  19. E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality (Nauka, Moscow, 1988). Engl. transl.: Rational Approximations and Orthogonality (Am. Math. Soc., Providence, RI, 1991), Transl. Math. Monogr. 92.

    MATH  Google Scholar 

  20. V. S. Rabinovich and S. Roch, “The essential spectrum of Schrödinger operators on lattices,” J. Phys. A: Math. Gen. 39 (26), 8377–8394 (2006).

    Article  Google Scholar 

  21. E. A. Rakhmanov, “On the asymptotics of the ratio of orthogonal polynomials,” Math. USSR, Sb. 32 (2), 199–213 (1977) [transl. from Mat. Sb. 103 (2), 237–252 (1977)].

    Article  MathSciNet  Google Scholar 

  22. E. A. Rakhmanov, “On the asymptotics of the ratio of orthogonal polynomials. II,” Math. USSR, Sb. 46 (1), 105–117 (1983) [transl. from Mat. Sb. 118 (1), 104–117 (1982)].

    Article  Google Scholar 

  23. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 1: Functional Analysis (Academic, New York, 1980).

    MATH  Google Scholar 

  24. M. A. Shubin, “Discrete magnetic Laplacian,” Commun. Math. Phys. 164 (2), 259–275 (1994).

    Article  MathSciNet  Google Scholar 

  25. W. Van Assche, “Nearest neighbor recurrence relations for multiple orthogonal polynomials,” J. Approx. Theory 163 (10), 1427–1448 (2011).

    Article  MathSciNet  Google Scholar 

  26. M. L. Yattselev, “Strong asymptotics of Hermite–Padé approximants for Angelesco systems,” Can. J. Math. 68 (5), 1159–1200 (2016).

    Article  Google Scholar 

Download references

Funding

The work of the first author (Sections 1 and 2) was supported the Russian Science Foundation under grant 19-71-30004. The work of the second and third authors (Section 3) was supported by the Moscow Center for Fundamental and Applied Mathematics (project no. 20-03-01). The second author was also supported by the National Science Foundation (grants DMS-1464479 and DMS-1764245) and by the Van Vleck Professorship Research Award. The third author was also supported by the Simons Foundation (grant CGM-354538).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Aptekarev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aptekarev, A.I., Denisov, S.A. & Yattselev, M.L. Discrete Schrödinger Operator on a Tree, Angelesco Potentials, and Their Perturbations. Proc. Steklov Inst. Math. 311, 1–9 (2020). https://doi.org/10.1134/S0081543820060012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543820060012

Navigation